BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 22222423)

  • 1. High throughput production of single core double emulsions in a parallelized microfluidic device.
    Romanowsky MB; Abate AR; Rotem A; Holtze C; Weitz DA
    Lab Chip; 2012 Feb; 12(4):802-7. PubMed ID: 22222423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces.
    Nisisako T; Ando T; Hatsuzawa T
    Lab Chip; 2012 Sep; 12(18):3426-35. PubMed ID: 22806835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drop formation in non-planar microfluidic devices.
    Rotem A; Abate AR; Utada AS; Van Steijn V; Weitz DA
    Lab Chip; 2012 Nov; 12(21):4263-8. PubMed ID: 22864475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions.
    Nawar S; Stolaroff JK; Ye C; Wu H; Nguyen DT; Xin F; Weitz DA
    Lab Chip; 2020 Jan; 20(1):147-154. PubMed ID: 31782446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices.
    Jeong WC; Lim JM; Choi JH; Kim JH; Lee YJ; Kim SH; Lee G; Kim JD; Yi GR; Yang SM
    Lab Chip; 2012 Apr; 12(8):1446-53. PubMed ID: 22402819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double emulsions from a capillary array injection microfluidic device.
    Shang L; Cheng Y; Wang J; Ding H; Rong F; Zhao Y; Gu Z
    Lab Chip; 2014 Sep; 14(18):3489-93. PubMed ID: 25025688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled formation of double-emulsion drops in sudden expansion channels.
    Kim SH; Kim B
    J Colloid Interface Sci; 2014 Feb; 415():26-31. PubMed ID: 24267326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput fluorescence detection using an integrated zone-plate array.
    Schonbrun E; Abate AR; Steinvurzel PE; Weitz DA; Crozier KB
    Lab Chip; 2010 Apr; 10(7):852-6. PubMed ID: 20300671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices.
    Fidalgo LM; Whyte G; Bratton D; Kaminski CF; Abell C; Huck WT
    Angew Chem Int Ed Engl; 2008; 47(11):2042-5. PubMed ID: 18264960
    [No Abstract]   [Full Text] [Related]  

  • 12. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications.
    Lin YH; Chen CT; Huang LL; Lee GB
    Biomed Microdevices; 2007 Dec; 9(6):833-43. PubMed ID: 17577672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Faster multiple emulsification with drop splitting.
    Abate AR; Weitz DA
    Lab Chip; 2011 Jun; 11(11):1911-5. PubMed ID: 21505660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet microfluidics for high-throughput analysis of cells and particles.
    Zagnoni M; Cooper JM
    Methods Cell Biol; 2011; 102():25-48. PubMed ID: 21704834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double emulsions with controlled morphology by microgel scaffolding.
    Thiele J; Seiffert S
    Lab Chip; 2011 Sep; 11(18):3188-92. PubMed ID: 21796282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of polymersomes using double-emulsion templates in glass-coated stamped microfluidic devices.
    Thiele J; Abate AR; Shum HC; Bachtler S; Förster S; Weitz DA
    Small; 2010 Aug; 6(16):1723-7. PubMed ID: 20665757
    [No Abstract]   [Full Text] [Related]  

  • 19. Nonspherical double emulsions with multiple distinct cores enveloped by ultrathin shells.
    Lee SS; Abbaspourrad A; Kim SH
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1294-300. PubMed ID: 24381982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.