BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22222436)

  • 21. Long-range electron transport to Fe(III) oxide via pili with metallic-like conductivity.
    Lovley DR
    Biochem Soc Trans; 2012 Dec; 40(6):1186-90. PubMed ID: 23176452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional studies of multiheme cytochromes C involved in extracellular electron transport in bacterial dissimilatory metal reduction.
    Tikhonova TV; Popov VO
    Biochemistry (Mosc); 2014 Dec; 79(13):1584-601. PubMed ID: 25749166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface display of roGFP for monitoring redox status of extracellular microenvironments in Shewanella oneidensis biofilms.
    Sivakumar K; Mukherjee M; Cheng HI; Zhang Y; Ji L; Cao B
    Biotechnol Bioeng; 2015 Mar; 112(3):512-20. PubMed ID: 25255765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Terminal electron acceptors influence the quantity and chemical composition of capsular exopolymers produced by anaerobically growing Shewanella spp.
    Neal AL; Dublin SN; Taylor J; Bates DJ; Burns JL; Apkarian R; DiChristina TJ
    Biomacromolecules; 2007 Jan; 8(1):166-74. PubMed ID: 17206803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tracking of Shewanella oneidensis MR-1 biofilm formation of a microbial electrochemical system via differential pulse voltammetry.
    Choi S; Kim B; Chang IS
    Bioresour Technol; 2018 Apr; 254():357-361. PubMed ID: 29398289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering Outer Membrane Vesicles to Increase Extracellular Electron Transfer of
    Yu H; Lu Y; Lan F; Wang Y; Hu C; Mao L; Wu D; Li F; Song H
    ACS Synth Biol; 2023 Jun; 12(6):1645-1656. PubMed ID: 37140342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogenase- and outer membrane c-type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1.
    Marshall MJ; Plymale AE; Kennedy DW; Shi L; Wang Z; Reed SB; Dohnalkova AC; Simonson CJ; Liu C; Saffarini DA; Romine MF; Zachara JM; Beliaev AS; Fredrickson JK
    Environ Microbiol; 2008 Jan; 10(1):125-36. PubMed ID: 17888007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical Detection of Deuterium Kinetic Isotope Effect on Extracellular Electron Transport in Shewanella oneidensis MR-1.
    Tokunou Y; Hashimoto K; Okamoto A
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29708543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel bacterial sulfite dehydrogenase that requires three
    Sun W; Xu Y; Liang Y; Yu Q; Gao H
    Appl Environ Microbiol; 2023 Oct; 89(10):e0110823. PubMed ID: 37732808
    [No Abstract]   [Full Text] [Related]  

  • 30. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens.
    Strycharz SM; Glaven RH; Coppi MV; Gannon SM; Perpetua LA; Liu A; Nevin KP; Lovley DR
    Bioelectrochemistry; 2011 Feb; 80(2):142-50. PubMed ID: 20696622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The utility of Shewanella japonica for microbial fuel cells.
    Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH
    Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Incubation Conditions on Cr(VI) Reduction by c-type Cytochromes in Intact Shewanella oneidensis MR-1 Cells.
    Han R; Li F; Liu T; Li X; Wu Y; Wang Y; Chen D
    Front Microbiol; 2016; 7():746. PubMed ID: 27242759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes.
    Zhang X; Liu H; Wang J; Ren G; Xie B; Liu H; Zhu Y; Jiang L
    Nanoscale; 2015 Nov; 7(44):18763-9. PubMed ID: 26505239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electromicrobiology.
    Lovley DR
    Annu Rev Microbiol; 2012; 66():391-409. PubMed ID: 22746334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism.
    Babauta JT; Nguyen HD; Beyenal H
    Environ Sci Technol; 2011 Aug; 45(15):6654-60. PubMed ID: 21648431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer.
    Shi L; Richardson DJ; Wang Z; Kerisit SN; Rosso KM; Zachara JM; Fredrickson JK
    Environ Microbiol Rep; 2009 Aug; 1(4):220-7. PubMed ID: 23765850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4.
    Ding CM; Lv ML; Zhu Y; Jiang L; Liu H
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1446-51. PubMed ID: 25470810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracellular electron transfer influences the transport and retention of ferrihydrite nanoparticles in quartz sand coated with Shewanella oneidensis biofilm.
    Liu G; Li H; Liu Y; Jin R; Zhou J; Ren Z; Wang Z; Yan C
    J Hazard Mater; 2021 Sep; 417():126023. PubMed ID: 33992002
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system.
    TerAvest MA; Rosenbaum MA; Kotloski NJ; Gralnick JA; Angenent LT
    Biotechnol Bioeng; 2014 Apr; 111(4):692-9. PubMed ID: 24122485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cation-limited kinetic model for microbial extracellular electron transport via an outer membrane cytochrome
    Okamoto A; Tokunou Y; Saito J
    Biophys Physicobiol; 2016; 13():71-76. PubMed ID: 27924259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.