BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22222436)

  • 41. Cation-limited kinetic model for microbial extracellular electron transport via an outer membrane cytochrome
    Okamoto A; Tokunou Y; Saito J
    Biophys Physicobiol; 2016; 13():71-76. PubMed ID: 27924259
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coupling riboflavin de novo biosynthesis and cytochrome expression for improving extracellular electron transfer efficiency in Shewanella oneidensis.
    Li Y; Li Y; Chen Y; Cheng M; Yu H; Song H; Cao Y
    Biotechnol Bioeng; 2022 Oct; 119(10):2806-2818. PubMed ID: 35798677
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Feedback stabilization involving redox states of c-type cytochromes in living bacteria.
    Liu H; Matsuda S; Kawai T; Hashimoto K; Nakanishi S
    Chem Commun (Camb); 2011 Apr; 47(13):3870-2. PubMed ID: 21331401
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In situ detection of microbial c-type cytochrome based on intrinsic peroxidase-like activity using screen-printed carbon electrode.
    Wen J; He D; Yu Z; Zhou S
    Biosens Bioelectron; 2018 Aug; 113():52-57. PubMed ID: 29729559
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes.
    Grobbler C; Virdis B; Nouwens A; Harnisch F; Rabaey K; Bond PL
    Syst Appl Microbiol; 2015 Mar; 38(2):135-9. PubMed ID: 25523930
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms.
    Bonanni PS; Massazza D; Busalmen JP
    Phys Chem Chem Phys; 2013 Jul; 15(25):10300-6. PubMed ID: 23698325
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrode potential regulates cytochrome accumulation on Shewanella oneidensis cell surface and the consequence to bioelectrocatalytic current generation.
    Peng L; You SJ; Wang JY
    Biosens Bioelectron; 2010 Jul; 25(11):2530-3. PubMed ID: 20427175
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In situ monitoring of Shewanella oneidensis MR-1 biofilm growth on gold electrodes by using a Pt microelectrode.
    Bao H; Zheng Z; Yang B; Liu D; Li F; Zhang X; Li Z; Lei L
    Bioelectrochemistry; 2016 Jun; 109():95-100. PubMed ID: 26850925
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multistep hopping and extracellular charge transfer in microbial redox chains.
    Pirbadian S; El-Naggar MY
    Phys Chem Chem Phys; 2012 Oct; 14(40):13802-8. PubMed ID: 22797729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identifying the potential extracellular electron transfer pathways from a c-type cytochrome network.
    Ding DW; Xu J; Li L; Xie JM; Sun X
    Mol Biosyst; 2014 Dec; 10(12):3138-46. PubMed ID: 25227320
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatiotemporal activity of the mshA gene system in Shewanella oneidensis MR-1 biofilms.
    Saville RM; Dieckmann N; Spormann AM
    FEMS Microbiol Lett; 2010 Jul; 308(1):76-83. PubMed ID: 20487019
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1.
    Grobbler C; Virdis B; Nouwens A; Harnisch F; Rabaey K; Bond PL
    Bioelectrochemistry; 2018 Feb; 119():172-179. PubMed ID: 29032328
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis.
    Biffinger JC; Ray R; Little BJ; Fitzgerald LA; Ribbens M; Finkel SE; Ringeisen BR
    Biotechnol Bioeng; 2009 Jun; 103(3):524-31. PubMed ID: 19189395
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions.
    Yang Y; Sun G; Guo J; Xu M
    Bioresour Technol; 2011 Jul; 102(14):7093-8. PubMed ID: 21571526
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell.
    Uría N; Muñoz Berbel X; Sánchez O; Muñoz FX; Mas J
    Environ Sci Technol; 2011 Dec; 45(23):10250-6. PubMed ID: 21981730
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In Situ Spectral Kinetics of Cr(VI) Reduction by c-Type Cytochromes in A Suspension of Living Shewanella putrefaciens 200.
    Liu T; Li X; Li F; Han R; Wu Y; Yuan X; Wang Y
    Sci Rep; 2016 Jul; 6():29592. PubMed ID: 27405048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Monitoring electron and proton diffusion flux through three-dimensional, paper-based, variable biofilm and liquid media layers.
    Choi G; Choi S
    Analyst; 2015 Sep; 140(17):5901-7. PubMed ID: 26179156
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode.
    Jain A; Zhang X; Pastorella G; Connolly JO; Barry N; Woolley R; Krishnamurthy S; Marsili E
    Bioelectrochemistry; 2012 Oct; 87():28-32. PubMed ID: 22281091
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1.
    Myers CR; Myers JM
    Lett Appl Microbiol; 2003; 37(3):254-8. PubMed ID: 12904229
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria.
    Malvankar NS; Mester T; Tuominen MT; Lovley DR
    Chemphyschem; 2012 Feb; 13(2):463-8. PubMed ID: 22253215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.