These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 22222507)
1. Optimization model for UV-riboflavin corneal cross-linking. Schumacher S; Mrochen M; Wernli J; Bueeler M; Seiler T Invest Ophthalmol Vis Sci; 2012 Feb; 53(2):762-9. PubMed ID: 22222507 [TBL] [Abstract][Full Text] [Related]
2. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Schumacher S; Oeftiger L; Mrochen M Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):9048-52. PubMed ID: 22025568 [TBL] [Abstract][Full Text] [Related]
3. Photochemical kinetics of corneal cross-linking with riboflavin. Kamaev P; Friedman MD; Sherr E; Muller D Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2360-7. PubMed ID: 22427580 [TBL] [Abstract][Full Text] [Related]
4. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Hammer A; Richoz O; Arba Mosquera S; Tabibian D; Hoogewoud F; Hafezi F Invest Ophthalmol Vis Sci; 2014 May; 55(5):2881-4. PubMed ID: 24677109 [TBL] [Abstract][Full Text] [Related]
5. Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking. Kling S; Ginis H; Marcos S Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):5010-5. PubMed ID: 22736617 [TBL] [Abstract][Full Text] [Related]
6. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Wernli J; Schumacher S; Spoerl E; Mrochen M Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):1176-80. PubMed ID: 23299484 [TBL] [Abstract][Full Text] [Related]
11. First proposed efficacy study of high versus standard irradiance and fractionated riboflavin/ultraviolet a cross-linking with equivalent energy exposure. Krueger RR; Herekar S; Spoerl E Eye Contact Lens; 2014 Nov; 40(6):353-7. PubMed ID: 25365552 [TBL] [Abstract][Full Text] [Related]
12. Safety of UVA-riboflavin cross-linking of the cornea. Spoerl E; Mrochen M; Sliney D; Trokel S; Seiler T Cornea; 2007 May; 26(4):385-9. PubMed ID: 17457183 [TBL] [Abstract][Full Text] [Related]
14. Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm). Iseli HP; Popp M; Seiler T; Spoerl E; Mrochen M J Refract Surg; 2011 Mar; 27(3):195-201. PubMed ID: 20873705 [TBL] [Abstract][Full Text] [Related]
15. Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study. Nguyen TM; Aubry JF; Touboul D; Fink M; Gennisson JL; Bercoff J; Tanter M Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5948-54. PubMed ID: 22871840 [TBL] [Abstract][Full Text] [Related]
16. Photochemical activation increases the porcine corneal stiffness and resistance to collagenase digestion. Wang T; Peng Y; Shen N; Yu Y; Yao M; Zhu J Exp Eye Res; 2014 Jun; 123():97-104. PubMed ID: 24768762 [TBL] [Abstract][Full Text] [Related]
17. Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Wollensak G; Iomdina E Acta Ophthalmol; 2009 Feb; 87(1):48-51. PubMed ID: 18547280 [TBL] [Abstract][Full Text] [Related]
18. Induction of cross-links in corneal tissue. Spoerl E; Huhle M; Seiler T Exp Eye Res; 1998 Jan; 66(1):97-103. PubMed ID: 9533835 [TBL] [Abstract][Full Text] [Related]
19. Impact of corneal cross-linking on drug penetration in an ex vivo porcine eye model. Tschopp M; Stary J; Frueh BE; Thormann W; De Smet J; Van Bocxlaer J; Tappeiner C Cornea; 2012 Mar; 31(3):222-6. PubMed ID: 22316648 [TBL] [Abstract][Full Text] [Related]