These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22223200)

  • 1. Simulation of movement of pesticides towards drains with a preferential flow version of PEARL.
    Tiktak A; Hendriks RF; Boesten JJ
    Pest Manag Sci; 2012 Feb; 68(2):290-302. PubMed ID: 22223200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of pesticide leaching in a cracking clay soil with the PEARL model.
    Scorza Júnior RP; Boesten JJ
    Pest Manag Sci; 2005 May; 61(5):432-48. PubMed ID: 15643643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing MACRO (version 5.1) for pesticide leaching in a Dutch clay soil.
    Scorza Júnior RP; Jarvis NJ; Boesten JJ; van der Zee SE; Roulier S
    Pest Manag Sci; 2007 Oct; 63(10):1011-25. PubMed ID: 17708522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks.
    Stenemo F; Lindahl AM; Gärdenäs A; Jarvis N
    J Contam Hydrol; 2007 Aug; 93(1-4):270-83. PubMed ID: 17531347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameterisation, evaluation and comparison of pesticide leaching models to data from a Bologna field site, Italy.
    Garratt JA; Capri E; Trevisan M; Errera G; Wilkins RM
    Pest Manag Sci; 2003 Jan; 59(1):3-20. PubMed ID: 12558095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accounting for uncertainty in pedotransfer functions in vulnerability assessments of pesticide leaching to groundwater.
    Stenemo F; Jarvis N
    Pest Manag Sci; 2007 Sep; 63(9):867-75. PubMed ID: 17583910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating pesticides in ditches to assess ecological risk (SPIDER): I. Model description.
    Renaud FG; Bellamy PH; Brown CD
    Sci Total Environ; 2008 May; 394(1):112-23. PubMed ID: 18275984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating pesticide transport from a sloped tropical soil to an adjacent stream.
    Kahl G; Ingwersen J; Totrakool S; Pansombat K; Thavornyutikarn P; Streck T
    J Environ Qual; 2010; 39(1):353-64. PubMed ID: 20048323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling hydrology, metribuzin degradation and metribuzin transport in macroporous tilled and no-till silt loam soil using RZWQM.
    Malone RW; Ma L; Wauchope RD; Ahuja LR; Rojas KW; Ma Q; Warner R; Byers M
    Pest Manag Sci; 2004 Mar; 60(3):253-66. PubMed ID: 15025237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils.
    Kjær J; Ernsten V; Jacobsen OH; Hansen N; de Jonge LW; Olsen P
    Chemosphere; 2011 Jul; 84(4):471-9. PubMed ID: 21481435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity analyses for four pesticide leaching models.
    Dubus IG; Brown CD; Beulke S
    Pest Manag Sci; 2003 Sep; 59(9):962-82. PubMed ID: 12974348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pesticide transport via sub-surface drains in Europe.
    Brown CD; van Beinum W
    Environ Pollut; 2009 Dec; 157(12):3314-24. PubMed ID: 19608317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrelationship of macropores and subsurface drainage for conservative tracer and pesticide transport.
    Fox GA; Malone R; Sabbagh GJ; Rojas K
    J Environ Qual; 2004; 33(6):2281-9. PubMed ID: 15537951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Herbicide leaching as affected by macropore flow and within-storm rainfall intensity variation: a RZWQM simulation.
    Malone RW; Weatherington-Rice J; Shipitalo MJ; Fausey N; Ma L; Ahuja LR; Wauchope RD; Ma Q
    Pest Manag Sci; 2004 Mar; 60(3):277-85. PubMed ID: 15025239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of model applications for structured soils: b) Pesticide transport.
    Köhne JM; Köhne S; Simůnek J
    J Contam Hydrol; 2009 Feb; 104(1-4):36-60. PubMed ID: 19012993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling depth-variant and domain-specific sorption and biodegradation in dual-permeability media.
    Ray C; Vogel T; Dusek J
    J Contam Hydrol; 2004 May; 70(1-2):63-87. PubMed ID: 15068869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling field-data of preferential flow in paddy soil induced by earthworm burrows.
    Sander T; Gerke HH
    J Contam Hydrol; 2009 Feb; 104(1-4):126-36. PubMed ID: 19064301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types.
    Kodesová R; Vignozzi N; Rohosková M; Hájková T; Kocárek M; Pagliai M; Kozák J; Simůnek J
    J Contam Hydrol; 2009 Feb; 104(1-4):107-25. PubMed ID: 19062128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a linked soil model emulator and unsaturated zone leaching model to account for preferential flow when assessing the spatially distributed risk of pesticide leaching to groundwater in England and Wales.
    Holman IP; Dubus IG; Hollis JM; Brown CD
    Sci Total Environ; 2004 Jan; 318(1-3):73-88. PubMed ID: 14654276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field leaching of pesticides at five test sites in Hawaii: modeling flow and transport.
    Dusek J; Dohnal M; Vogel T; Ray C
    Pest Manag Sci; 2011 Dec; 67(12):1571-82. PubMed ID: 21681917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.