These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 22223302)
1. Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering. Dispinar T; Van Camp W; De Cock LJ; De Geest BG; Du Prez FE Macromol Biosci; 2012 Mar; 12(3):383-94. PubMed ID: 22223302 [TBL] [Abstract][Full Text] [Related]
2. Macroporous starPEG-heparin cryogels. Welzel PB; Grimmer M; Renneberg C; Naujox L; Zschoche S; Freudenberg U; Werner C Biomacromolecules; 2012 Aug; 13(8):2349-58. PubMed ID: 22758219 [TBL] [Abstract][Full Text] [Related]
3. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Hwang Y; Sangaj N; Varghese S Tissue Eng Part A; 2010 Oct; 16(10):3033-41. PubMed ID: 20486791 [TBL] [Abstract][Full Text] [Related]
4. Oxidized dextran as crosslinker for chitosan cryogel scaffolds and formation of polyelectrolyte complexes between chitosan and gelatin. Berillo D; Elowsson L; Kirsebom H Macromol Biosci; 2012 Aug; 12(8):1090-9. PubMed ID: 22674878 [TBL] [Abstract][Full Text] [Related]
5. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. Tripathi A; Kathuria N; Kumar A J Biomed Mater Res A; 2009 Sep; 90(3):680-94. PubMed ID: 18563830 [TBL] [Abstract][Full Text] [Related]
6. Enzyme-catalyzed crosslinking in a partly frozen state: a new way to produce supermacroporous protein structures. Kirsebom H; Elowsson L; Berillo D; Cozzi S; Inci I; Piskin E; Galaev IY; Mattiasson B Macromol Biosci; 2013 Jan; 13(1):67-76. PubMed ID: 23239633 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and characterization of a temperature-responsive biocompatible poly(N-vinylcaprolactam) cryogel: a step towards designing a novel cell scaffold. Srivastava A; Kumar A J Biomater Sci Polym Ed; 2009; 20(10):1393-415. PubMed ID: 19622279 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Kathuria N; Tripathi A; Kar KK; Kumar A Acta Biomater; 2009 Jan; 5(1):406-18. PubMed ID: 18701361 [TBL] [Abstract][Full Text] [Related]
10. Macroporous PEG-Alginate Hybrid Double-Network Cryogels with Tunable Degradation Rates Prepared via Radical-Free Cross-Linking for Cartilage Tissue Engineering. Zhang K; Yang Z; Seitz MP; Jain E ACS Appl Bio Mater; 2024 Sep; 7(9):5925-5938. PubMed ID: 39135543 [TBL] [Abstract][Full Text] [Related]
11. Superelastic and pH-Responsive Degradable Dendrimer Cryogels Prepared by Cryo-aza-Michael Addition Reaction. Wang J; Yang H Sci Rep; 2018 May; 8(1):7155. PubMed ID: 29740011 [TBL] [Abstract][Full Text] [Related]
12. Inorganic/organic biocomposite cryogels for regeneration of bony tissues. Mishra R; Kumar A J Biomater Sci Polym Ed; 2011; 22(16):2107-26. PubMed ID: 21067655 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications. Sharma A; Bhat S; Nayak V; Kumar A Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201 [TBL] [Abstract][Full Text] [Related]
14. New E-beam-initiated hyaluronan acrylate cryogels support growth and matrix deposition by dermal fibroblasts. Thönes S; Kutz LM; Oehmichen S; Becher J; Heymann K; Saalbach A; Knolle W; Schnabelrauch M; Reichelt S; Anderegg U Int J Biol Macromol; 2017 Jan; 94(Pt A):611-620. PubMed ID: 27773837 [TBL] [Abstract][Full Text] [Related]
15. Polymeric cryogels are biocompatible, and their biodegradation is independent of oxidative radicals. Shakya AK; Holmdahl R; Nandakumar KS; Kumar A J Biomed Mater Res A; 2014 Oct; 102(10):3409-18. PubMed ID: 24142798 [TBL] [Abstract][Full Text] [Related]
16. Thiol-Reactive Clickable Cryogels: Importance of Macroporosity and Linkers on Biomolecular Immobilization. Chambre L; Maouati H; Oz Y; Sanyal R; Sanyal A Bioconjug Chem; 2020 Sep; 31(9):2116-2124. PubMed ID: 32786374 [TBL] [Abstract][Full Text] [Related]
18. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Chung EJ; Sugimoto M; Koh JL; Ameer GA Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018 [TBL] [Abstract][Full Text] [Related]
19. Tunable hybrid cryogels functionalized with microparticles as supermacroporous multifunctional biomaterial scaffolds. Sami H; Kumar A J Biomater Sci Polym Ed; 2013; 24(10):1165-84. PubMed ID: 23713421 [TBL] [Abstract][Full Text] [Related]
20. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Weber N; Lee YS; Shanmugasundaram S; Jaffe M; Arinzeh TL Acta Biomater; 2010 Sep; 6(9):3550-6. PubMed ID: 20371302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]