BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22223483)

  • 1. Novel application of human neurons derived from induced pluripotent stem cells for highly sensitive botulinum neurotoxin detection.
    Whitemarsh RC; Strathman MJ; Chase LG; Stankewicz C; Tepp WH; Johnson EA; Pellett S
    Toxicol Sci; 2012 Apr; 126(2):426-35. PubMed ID: 22223483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of ELISA as endpoint in neuronal cell-based assay for BoNT detection using hiPSC derived neurons.
    Pellett S; Tepp WH; Johnson EA; Sesardic D
    J Pharmacol Toxicol Methods; 2017 Nov; 88(Pt 1):1-6. PubMed ID: 28465161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate cleavage and duration of action of botulinum neurotoxin type FA ("H, HA").
    Pellett S; Tepp WH; Lin G; Johnson EA
    Toxicon; 2018 Jun; 147():38-46. PubMed ID: 29273248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive and quantitative detection of botulinum neurotoxin in neurons derived from mouse embryonic stem cells.
    Pellett S; Du ZW; Pier CL; Tepp WH; Zhang SC; Johnson EA
    Biochem Biophys Res Commun; 2011 Jan; 404(1):388-92. PubMed ID: 21130748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryonic stem cell-derived neurons are a novel, highly sensitive tissue culture platform for botulinum research.
    McNutt P; Celver J; Hamilton T; Mesngon M
    Biochem Biophys Res Commun; 2011 Feb; 405(1):85-90. PubMed ID: 21215258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. hiPSC-Derived Neurons Provide a Robust and Physiologically Relevant
    Lamotte JD; Roqueviere S; Gautier H; Raban E; Bouré C; Fonfria E; Krupp J; Nicoleau C
    Front Pharmacol; 2020; 11():617867. PubMed ID: 33519485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and Characterization of the Novel Botulinum Neurotoxin A Subtype 6.
    Moritz MS; Tepp WH; Bradshaw M; Johnson EA; Pellett S
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30355669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of gene expression in induced pluripotent stem cell-derived human neurons exposed to botulinum neurotoxin A subtype 1 and a type A atoxic derivative.
    Scherf JM; Hu XS; Tepp WH; Ichtchenko K; Johnson EA; Pellett S
    PLoS One; 2014; 9(10):e111238. PubMed ID: 25337697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Induced Pluripotent Stem Cell Derived Neuronal Cells Cultured on Chemically-Defined Hydrogels for Sensitive In Vitro Detection of Botulinum Neurotoxin.
    Pellett S; Schwartz MP; Tepp WH; Josephson R; Scherf JM; Pier CL; Thomson JA; Murphy WL; Johnson EA
    Sci Rep; 2015 Sep; 5():14566. PubMed ID: 26411797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Botulinum neurotoxins A, B, C, E, and F preferentially enter cultured human motor neurons compared to other cultured human neuronal populations.
    Pellett S; Tepp WH; Johnson EA
    FEBS Lett; 2019 Sep; 593(18):2675-2685. PubMed ID: 31240706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the primary rat spinal cord cell (RSC) assay and the mouse bioassay for botulinum neurotoxin type A potency determination.
    Pellett S; Tepp WH; Toth SI; Johnson EA
    J Pharmacol Toxicol Methods; 2010; 61(3):304-10. PubMed ID: 20100585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of botulinum neurotoxin type D (strain 1873) in human neurons.
    Pellett S; Tepp WH; Scherf JM; Pier CL; Johnson EA
    Toxicon; 2015 Jul; 101():63-9. PubMed ID: 25937339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microscale neuron and Schwann cell coculture model for increasing detection sensitivity of botulinum neurotoxin type A.
    Hong WS; Young EW; Tepp WH; Johnson EA; Beebe DJ
    Toxicol Sci; 2013 Jul; 134(1):64-72. PubMed ID: 23564642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human-Relevant Sensitivity of iPSC-Derived Human Motor Neurons to BoNT/A1 and B1.
    Schenke M; Prause HC; Bergforth W; Przykopanski A; Rummel A; Klawonn F; Seeger B
    Toxins (Basel); 2021 Aug; 13(8):. PubMed ID: 34437455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency.
    Yadirgi G; Stickings P; Rajagopal S; Liu Y; Sesardic D
    J Immunol Methods; 2017 Dec; 451():90-99. PubMed ID: 28943257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid chemiluminescent slot blot immunoassay for the detection and quantification of Clostridium botulinum neurotoxin type E, in cultures.
    Cadieux B; Blanchfield B; Smith JP; Austin JW
    Int J Food Microbiol; 2005 May; 101(1):9-16. PubMed ID: 15878402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional evaluation of biological neurotoxins in networked cultures of stem cell-derived central nervous system neurons.
    Hubbard K; Beske P; Lyman M; McNutt P
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25742030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistence of botulinum neurotoxin A demonstrated by sequential administration of serotypes A and E in rat EDL muscle.
    Adler M; Keller JE; Sheridan RE; Deshpande SS
    Toxicon; 2001; 39(2-3):233-43. PubMed ID: 10978741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha-latrotoxin rescues SNAP-25 from BoNT/A-mediated proteolysis in embryonic stem cell-derived neurons.
    Mesngon M; McNutt P
    Toxins (Basel); 2011 May; 3(5):489-503. PubMed ID: 22069721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of botulinum neurotoxin into cultured neurons.
    Keller JE; Cai F; Neale EA
    Biochemistry; 2004 Jan; 43(2):526-32. PubMed ID: 14717608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.