These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 2222440)
1. Theoretical variation of the H alpha chemical shift in acetyl-glycyl-N-methylamide and oligoglycines with molecular conformation and environment. Gresh N; Giessner-Prettre C Biochem Biophys Res Commun; 1990 Sep; 171(3):1211-6. PubMed ID: 2222440 [TBL] [Abstract][Full Text] [Related]
2. Ab initio quantum mechanical calculations of the variation of the 1H and 13C nuclear magnetic shielding constants in proline as a function of the angle psi. Giessner-Prettre C; Cung MT; Marraud M Eur J Biochem; 1987 Feb; 163(1):79-87. PubMed ID: 3028796 [TBL] [Abstract][Full Text] [Related]
3. Glycyl C(alpha) chemical shielding in tripeptides: measurement by solid-state NMR and correlation with X-ray structure and theory. Chekmenev EY; Xu RZ; Mashuta MS; Wittebort RJ J Am Chem Soc; 2002 Oct; 124(40):11894-9. PubMed ID: 12358533 [TBL] [Abstract][Full Text] [Related]
4. Solid-state IR-LD spectroscopic and theoretical analysis of glycine-containing peptides and their hydrochlorides. Ivanova BB; Kolev T; Zareva SY Biopolymers; 2006 Aug; 82(6):587-96. PubMed ID: 16552765 [TBL] [Abstract][Full Text] [Related]
5. Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation. Serrano L J Mol Biol; 1995 Nov; 254(2):322-33. PubMed ID: 7490751 [TBL] [Abstract][Full Text] [Related]
6. Conformational effects of C(alpha,alpha)-dipropargylglycine as a constrained residue. Damodharan L; Mohanraja K; Kotha S; Durani S; Pattabhi V Biopolymers; 2001 Oct; 59(5):330-8. PubMed ID: 11514936 [TBL] [Abstract][Full Text] [Related]
7. Theoretical study of the effective Chemical Shielding Anisotropy (CSA) in peptide backbone, rating the impact of CSAs on the cross-correlated relaxations in L-alanyl-L-alanine. Benda L; Bour P; Müller N; Sychrovský V J Phys Chem B; 2009 Apr; 113(15):5273-81. PubMed ID: 19301831 [TBL] [Abstract][Full Text] [Related]
8. Analysis of proton chemical shifts in regular secondary structure of proteins. Osapay K; Case DA J Biomol NMR; 1994 Mar; 4(2):215-30. PubMed ID: 8019135 [TBL] [Abstract][Full Text] [Related]
9. Experimental conformational energy maps of proteins and peptides. Balaji GA; Nagendra HG; Balaji VN; Rao SN Proteins; 2017 Jun; 85(6):979-1001. PubMed ID: 28168743 [TBL] [Abstract][Full Text] [Related]
10. Determination of the microscopic and macroscopic acid dissociation constants of glycyl-L-histidyl-L-lysine and related histidine peptides. Rabenstein DL; Greenberg MS; Evans CA Biochemistry; 1977 Mar; 16(5):977-81. PubMed ID: 14668 [TBL] [Abstract][Full Text] [Related]
11. 13C-nuclear magnetic resonance studies of 85% 13C-enriched amino acids and small peptides. pH effects on the chemical shifts, coupling constants, kinetics of cis-trans isomerisation and conformation aspects. Fermandjian S; Tran-Dinh ; Savrda J; Sala E; Mermet-Bouvier R; Bricas E; Fromageot P Biochim Biophys Acta; 1975 Aug; 399(2):313-38. PubMed ID: 240412 [TBL] [Abstract][Full Text] [Related]
12. Solid-state NMR and quantum chemical investigations of 13Calpha shielding tensor magnitudes and orientations in peptides: determining phi and psi torsion angles. Wi S; Sun H; Oldfield E; Hong M J Am Chem Soc; 2005 May; 127(17):6451-8. PubMed ID: 15853353 [TBL] [Abstract][Full Text] [Related]
13. 13C multiplet nuclear magnetic resonance relaxation-derived ring puckering and backbone dynamics in proline-containing glycine-based peptides. Mikhailov D; Daragan VA; Mayo KH Biophys J; 1995 Apr; 68(4):1540-50. PubMed ID: 7787039 [TBL] [Abstract][Full Text] [Related]
14. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. Smith LJ; Bolin KA; Schwalbe H; MacArthur MW; Thornton JM; Dobson CM J Mol Biol; 1996 Jan; 255(3):494-506. PubMed ID: 8568893 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of a helical oligopeptide model of polyglycine II and of other polyamides: acetyl-(glycyl-beta-alanyl)2-NH propyl. Tormo J; Puiggali J; Vives J; Fita I; Lloveras J; Bella J; Aymamí J; Subirana JA Biopolymers; 1992 Jun; 32(6):643-8. PubMed ID: 1643267 [TBL] [Abstract][Full Text] [Related]
16. 1H- and 13C-NMR investigations on cis-trans isomerization of proline peptide bonds and conformation of aromatic side chains in H-Trp-(Pro)n-Tyr-OH peptides. Poznański J; Ejchart A; Wierzchowski KL; Ciurak M Biopolymers; 1993 May; 33(5):781-95. PubMed ID: 8393714 [TBL] [Abstract][Full Text] [Related]
17. 15N Chemical shielding in glycyl tripeptides: measurement by solid-state NMR and correlation with X-ray structure. Chekmenev EY; Zhang Q; Waddell KW; Mashuta MS; Wittebort RJ J Am Chem Soc; 2004 Jan; 126(1):379-84. PubMed ID: 14709105 [TBL] [Abstract][Full Text] [Related]
18. Linear tripeptide conformation. Crystal structures of Cbz-glycylglycyltyrosine methyl ester and Cbz-glycyl(D,L)tyrosylglycine ethyl ester. Krause JA; Eggleston DS Int J Pept Protein Res; 1993 Feb; 41(2):133-40. PubMed ID: 8458686 [TBL] [Abstract][Full Text] [Related]
19. Conformational structure of tyrosine, tyrosyl-glycine, and tyrosyl-glycyl-glycine by double resonance spectroscopy. Abo-Riziq A; Grace L; Crews B; Callahan MP; van Mourik T; de Vries MS J Phys Chem A; 2011 Jun; 115(23):6077-87. PubMed ID: 21413771 [TBL] [Abstract][Full Text] [Related]
20. Conformational behavior of C alpha,alpha-diphenyl glycine: extended conformation in tripeptides containing consecutive D phi G residues. Pavone V; Lombardi A; Saviano M; De Simone G; Nastri F; Maglio O; Omote Y; Yamanaka Y; Yamada T Biopolymers; 2000 Feb; 53(2):161-8. PubMed ID: 10679620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]