BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22224483)

  • 21. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan.
    Takagi T; Ramachandran C; Bermejo M; Yamashita S; Yu LX; Amidon GL
    Mol Pharm; 2006; 3(6):631-43. PubMed ID: 17140251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS): Beyond guidelines.
    Charalabidis A; Sfouni M; Bergström C; Macheras P
    Int J Pharm; 2019 Jul; 566():264-281. PubMed ID: 31108154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of DILI Predictive Hypotheses in Early Drug Development.
    Chan R; Benet LZ
    Chem Res Toxicol; 2017 Apr; 30(4):1017-1029. PubMed ID: 28257576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinguishing between the permeability relationships with absorption and metabolism to improve BCS and BDDCS predictions in early drug discovery.
    Larregieu CA; Benet LZ
    Mol Pharm; 2014 Apr; 11(4):1335-44. PubMed ID: 24628254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting Passive Permeability of Drug-like Molecules from Chemical Structure: Where Are We?
    Broccatelli F; Salphati L; Plise E; Cheong J; Gobbi A; Lee ML; Aliagas I
    Mol Pharm; 2016 Dec; 13(12):4199-4208. PubMed ID: 27806577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drug Disposition Classification Systems in Discovery and Development: A Comparative Review of the BDDCS, ECCS and ECCCS Concepts.
    Camenisch GP
    Pharm Res; 2016 Nov; 33(11):2583-93. PubMed ID: 27439505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interplay of biopharmaceutics, biopharmaceutics drug disposition and salivary excretion classification systems.
    Idkaidek NM
    Saudi Pharm J; 2014 Jan; 22(1):79-81. PubMed ID: 24493977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generative topographic mapping-based classification models and their applicability domain: application to the biopharmaceutics Drug Disposition Classification System (BDDCS).
    Gaspar HA; Marcou G; Horvath D; Arault A; Lozano S; Vayer P; Varnek A
    J Chem Inf Model; 2013 Dec; 53(12):3318-25. PubMed ID: 24320683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hepatic Clearance Predictions from In Vitro-In Vivo Extrapolation and the Biopharmaceutics Drug Disposition Classification System.
    Bowman CM; Benet LZ
    Drug Metab Dispos; 2016 Nov; 44(11):1731-1735. PubMed ID: 27519549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative prediction of formulation-specific food effects and their population variability from in vitro data with the physiologically-based ADAM model: a case study using the BCS/BDDCS Class II drug nifedipine.
    Patel N; Polak S; Jamei M; Rostami-Hodjegan A; Turner DB
    Eur J Pharm Sci; 2014 Jun; 57():240-9. PubMed ID: 24060671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intestinal drug transporters: an overview.
    Estudante M; Morais JG; Soveral G; Benet LZ
    Adv Drug Deliv Rev; 2013 Oct; 65(10):1340-56. PubMed ID: 23041352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biopharmaceutics classification systems for new molecular entities (BCS-NMEs) and marketed drugs (BCS-MD): theoretical basis and practical examples.
    Papadopoulou V; Valsami G; Dokoumetzidis A; Macheras P
    Int J Pharm; 2008 Sep; 361(1-2):70-7. PubMed ID: 18614303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the interplay of physiological response to food intake and drug properties in food-drug interactions.
    Sharma S; Kogan C; Varma MVS; Prasad B
    Drug Metab Pharmacokinet; 2023 Dec; 53():100518. PubMed ID: 37856928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of drug metabolism for prediction of intestinal permeability (dagger).
    Chen ML; Yu L
    Mol Pharm; 2009; 6(1):74-81. PubMed ID: 19132929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting when biliary excretion of parent drug is a major route of elimination in humans.
    Hosey CM; Broccatelli F; Benet LZ
    AAPS J; 2014 Sep; 16(5):1085-96. PubMed ID: 25004821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational-Regulatory Developments in the Prediction of Oral Drug Absorption.
    Valsami G; Macheras P
    Mol Inform; 2011 Mar; 30(2-3):112-21. PubMed ID: 27466762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting intestinal transporters for optimizing oral drug absorption.
    Varma MV; Ambler CM; Ullah M; Rotter CJ; Sun H; Litchfield J; Fenner KS; El-Kattan AF
    Curr Drug Metab; 2010 Nov; 11(9):730-42. PubMed ID: 21189135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting the extent of metabolism using in vitro permeability rate measurements and in silico permeability rate predictions.
    Hosey CM; Benet LZ
    Mol Pharm; 2015 May; 12(5):1456-66. PubMed ID: 25816851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of data mining approach to identify drug subclasses based on solubility and permeability.
    Gatarić B; Parojčić J
    Biopharm Drug Dispos; 2019 Feb; 40(2):51-61. PubMed ID: 30635908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of solubility and permeability class membership: provisional BCS classification of the world's top oral drugs.
    Dahan A; Miller JM; Amidon GL
    AAPS J; 2009 Dec; 11(4):740-6. PubMed ID: 19876745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.