These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22224595)

  • 1. Response of sediment microbial community structure in a freshwater reservoir to manipulations in oxygen availability.
    Bryant LD; Little JC; Bürgmann H
    FEMS Microbiol Ecol; 2012 Apr; 80(1):248-63. PubMed ID: 22224595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased sediment oxygen uptake caused by oxygenation-induced hypolimnetic mixing.
    Bryant LD; Gantzer PA; Little JC
    Water Res; 2011 Jun; 45(12):3692-703. PubMed ID: 21565379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solving the problem at the source: Controlling Mn release at the sediment-water interface via hypolimnetic oxygenation.
    Bryant LD; Hsu-Kim H; Gantzer PA; Little JC
    Water Res; 2011 Dec; 45(19):6381-92. PubMed ID: 22000717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology.
    Dong H; Zhang G; Jiang H; Yu B; Chapman LR; Lucas CR; Fields MW
    Microb Ecol; 2006 Jan; 51(1):65-82. PubMed ID: 16400537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau.
    Jiang H; Dong H; Yu B; Liu X; Li Y; Ji S; Zhang CL
    Environ Microbiol; 2007 Oct; 9(10):2603-21. PubMed ID: 17803783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial Response to Experimentally Controlled Redox Transitions at the Sediment Water Interface.
    Frindte K; Allgaier M; Grossart HP; Eckert W
    PLoS One; 2015; 10(11):e0143428. PubMed ID: 26599000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism.
    Broman E; Sjöstedt J; Pinhassi J; Dopson M
    Microbiome; 2017 Aug; 5(1):96. PubMed ID: 28793929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling soluble iron and manganese in a water-supply reservoir using hypolimnetic oxygenation.
    Gantzer PA; Bryant LD; Little JC
    Water Res; 2009 Mar; 43(5):1285-94. PubMed ID: 19157483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of TiO
    Miao L; Wang P; Wang C; Hou J; Yao Y; Liu J; Lv B; Yang Y; You G; Xu Y; Liu Z; Liu S
    Water Res; 2018 Feb; 129():287-296. PubMed ID: 29156393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments.
    Forehead HI; Kendrick GA; Thompson PA
    FEMS Microbiol Ecol; 2012 Apr; 80(1):64-76. PubMed ID: 22133029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frequency sensor data capture short-term variability in Fe and Mn concentrations due to hypolimnetic oxygenation and seasonal dynamics in a drinking water reservoir.
    Hammond NW; Birgand F; Carey CC; Bookout B; Breef-Pilz A; Schreiber ME
    Water Res; 2023 Jul; 240():120084. PubMed ID: 37235894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability.
    De Jonge M; Teuchies J; Meire P; Blust R; Bervoets L
    Water Res; 2012 May; 46(7):2205-14. PubMed ID: 22349002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential.
    Wildung RE; Li SW; Murray CJ; Krupka KM; Xie Y; Hess NJ; Roden EE
    FEMS Microbiol Ecol; 2004 Jul; 49(1):151-62. PubMed ID: 19712393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sedimentary microbial oxygen demand for laminar flow over a sediment bed of finite length.
    Higashino M; Stefan HG
    Water Res; 2005 Sep; 39(14):3153-66. PubMed ID: 16054191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of bacteria on nitrogen and phosphorus release from river sediment.
    Wu Q; Zhang R; Huang S; Zhang H
    J Environ Sci (China); 2008; 20(4):404-12. PubMed ID: 18575123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.
    Chai BB; Huang TL; Zhao XG; Li YJ
    J Environ Biol; 2015 Jul; 36 Spec No():845-55. PubMed ID: 26387360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Characteristics of Sediment Oxygen Demand in a Drinking Water Reservoir].
    Su L; Huang TL; Li N; Zhang HH; Wen G; Li Y; Chen JW; Wang XJ
    Huan Jing Ke Xue; 2018 Mar; 39(3):1159-1166. PubMed ID: 29965460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial extracellular polymeric substances (EPS) in fresh water sediments.
    Gerbersdorf SU; Westrich B; Paterson DM
    Microb Ecol; 2009 Aug; 58(2):334-49. PubMed ID: 19242746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment.
    Kikuchi S; Makita H; Konno U; Shiraishi F; Ijiri A; Takai K; Maeda M; Takahashi Y
    Geobiology; 2016 Jul; 14(4):374-89. PubMed ID: 27027643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Relationship Between the Vertical Distribution of Nutrients and Bacterial Community Structures in Sediment Interstitial Waters of Stratified Reservoirs with Different Water Temperatures].
    Wang S; Zhang SS; Xu Y; Guan ZY; Yang ZJ; Liu DF; Ma J
    Huan Jing Ke Xue; 2019 Jun; 40(6):2753-2763. PubMed ID: 31854668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.