These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 22224622)
1. Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes. King PJ; Higgins TM; De S; Nicoloso N; Coleman JN ACS Nano; 2012 Feb; 6(2):1732-41. PubMed ID: 22224622 [TBL] [Abstract][Full Text] [Related]
2. Effect of percolation on the capacitance of supercapacitor electrodes prepared from composites of manganese dioxide nanoplatelets and carbon nanotubes. Higgins TM; McAteer D; Coelho JC; Mendoza Sanchez B; Gholamvand Z; Moriarty G; McEvoy N; Berner NC; Duesberg GS; Nicolosi V; Coleman JN ACS Nano; 2014 Sep; 8(9):9567-79. PubMed ID: 25199042 [TBL] [Abstract][Full Text] [Related]
3. Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance. Basiricò L; Lanzara G Nanotechnology; 2012 Aug; 23(30):305401. PubMed ID: 22751034 [TBL] [Abstract][Full Text] [Related]
4. Size effects and the problem with percolation in nanostructured transparent conductors. De S; King PJ; Lyons PE; Khan U; Coleman JN ACS Nano; 2010 Dec; 4(12):7064-72. PubMed ID: 21133390 [TBL] [Abstract][Full Text] [Related]
5. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Ge J; Cheng G; Chen L Nanoscale; 2011 Aug; 3(8):3084-8. PubMed ID: 21738910 [TBL] [Abstract][Full Text] [Related]
6. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427 [TBL] [Abstract][Full Text] [Related]
7. Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. Yuksel R; Sarioba Z; Cirpan A; Hiralal P; Unalan HE ACS Appl Mater Interfaces; 2014 Sep; 6(17):15434-9. PubMed ID: 25127070 [TBL] [Abstract][Full Text] [Related]
8. Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS2 Nanosheet and Nanosheet-Carbon Nanotube Composite Catalytic Electrodes. McAteer D; Gholamvand Z; McEvoy N; Harvey A; O'Malley E; Duesberg GS; Coleman JN ACS Nano; 2016 Jan; 10(1):672-83. PubMed ID: 26646693 [TBL] [Abstract][Full Text] [Related]
9. Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks. Simien D; Fagan JA; Luo W; Douglas JF; Migler K; Obrzut J ACS Nano; 2008 Sep; 2(9):1879-84. PubMed ID: 19206428 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. Chen PC; Shen G; Shi Y; Chen H; Zhou C ACS Nano; 2010 Aug; 4(8):4403-11. PubMed ID: 20731426 [TBL] [Abstract][Full Text] [Related]
11. Effect of temperature on the capacitance of carbon nanotube supercapacitors. Masarapu C; Zeng HF; Hung KH; Wei B ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250 [TBL] [Abstract][Full Text] [Related]
12. Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application. Lee JA; Shin MK; Kim SH; Kim SJ; Spinks GM; Wallace GG; Ovalle-Robles R; Lima MD; Kozlov ME; Baughman RH ACS Nano; 2012 Jan; 6(1):327-34. PubMed ID: 22168757 [TBL] [Abstract][Full Text] [Related]
13. Electrical percolation thresholds of semiconducting single-walled carbon nanotube networks in field-effect transistors. Jang HK; Jin JE; Choi JH; Kang PS; Kim DH; Kim GT Phys Chem Chem Phys; 2015 Mar; 17(10):6874-80. PubMed ID: 25673219 [TBL] [Abstract][Full Text] [Related]
14. Dioxythiophene-based polymer electrodes for supercapacitor modules. Liu DY; Reynolds JR ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685 [TBL] [Abstract][Full Text] [Related]
15. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Xie K; Li J; Lai Y; Zhang Z; Liu Y; Zhang G; Huang H Nanoscale; 2011 May; 3(5):2202-7. PubMed ID: 21455534 [TBL] [Abstract][Full Text] [Related]
16. Hydrous RuO(2)-Carbon Nanofiber electrodes with high mass and electrode-specific capacitance for efficient energy storage. Vellacheri R; Pillai VK; Kurungot S Nanoscale; 2012 Feb; 4(3):890-6. PubMed ID: 22159715 [TBL] [Abstract][Full Text] [Related]
17. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications. Hyder MN; Lee SW; Cebeci FÇ; Schmidt DJ; Shao-Horn Y; Hammond PT ACS Nano; 2011 Nov; 5(11):8552-61. PubMed ID: 21981582 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. Li X; Rong J; Wei B ACS Nano; 2010 Oct; 4(10):6039-49. PubMed ID: 20828214 [TBL] [Abstract][Full Text] [Related]
19. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Jiang H; Li C; Sun T; Ma J Nanoscale; 2012 Feb; 4(3):807-12. PubMed ID: 22159343 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors. Liu R; Duay J; Lane T; Bok Lee S Phys Chem Chem Phys; 2010 May; 12(17):4309-16. PubMed ID: 20407700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]