These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 22224913)
1. The influence of different magnitudes and methods of applying preload on fusion and disc replacement constructs in the lumbar spine: a finite element analysis. Zhong ZC; Hung C; Lin HM; Wang YH; Huang CH; Chen CS Comput Methods Biomech Biomed Engin; 2013; 16(9):943-53. PubMed ID: 22224913 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical Effects of the Geometry of Ball-and-Socket Artificial Disc on Lumbar Spine: A Finite Element Study. Choi J; Shin DA; Kim S Spine (Phila Pa 1976); 2017 Mar; 42(6):E332-E339. PubMed ID: 27428389 [TBL] [Abstract][Full Text] [Related]
3. Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Zhong ZC; Chen SH; Hung CH Proc Inst Mech Eng H; 2009 Feb; 223(2):143-57. PubMed ID: 19278192 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical response of lumbar facet joints under follower preload: a finite element study. Du CF; Yang N; Guo JC; Huang YP; Zhang C BMC Musculoskelet Disord; 2016 Mar; 17():126. PubMed ID: 26980002 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical evaluation of a new pedicle screw-based posterior dynamic stabilization device (Awesome Rod System)--a finite element analysis. Chen CS; Huang CH; Shih SL BMC Musculoskelet Disord; 2015 Apr; 16():81. PubMed ID: 25880231 [TBL] [Abstract][Full Text] [Related]
6. Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis. Shih SL; Chen CS; Lin HM; Huang LY; Liu CL; Huang CH; Cheng CK J Spinal Disord Tech; 2012 Jul; 25(5):E140-9. PubMed ID: 22744611 [TBL] [Abstract][Full Text] [Related]
7. In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement. Chen WM; Park C; Lee K; Lee S Spine (Phila Pa 1976); 2009 Sep; 34(20):E716-23. PubMed ID: 19752690 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical comparison between lumbar disc arthroplasty and fusion. Chen SH; Zhong ZC; Chen CS; Chen WJ; Hung C Med Eng Phys; 2009 Mar; 31(2):244-53. PubMed ID: 18760654 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical advantages of robot-assisted pedicle screw fixation in posterior lumbar interbody fusion compared with freehand technique in a prospective randomized controlled trial-perspective for patient-specific finite element analysis. Kim HJ; Kang KT; Park SC; Kwon OH; Son J; Chang BS; Lee CK; Yeom JS; Lenke LG Spine J; 2017 May; 17(5):671-680. PubMed ID: 27867080 [TBL] [Abstract][Full Text] [Related]
10. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation. Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316 [TBL] [Abstract][Full Text] [Related]
11. Effect of single and multilevel artificial inter-vertebral disc replacement in lumbar spine: A finite element study. Biswas JK; Rana M; Malas A; Roy S; Chatterjee S; Choudhury S Int J Artif Organs; 2022 Feb; 45(2):193-199. PubMed ID: 33706581 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis. Demetropoulos CK; Sengupta DK; Knaub MA; Wiater BP; Abjornson C; Truumees E; Herkowitz HN Spine (Phila Pa 1976); 2010 Jan; 35(1):26-31. PubMed ID: 20042953 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments. Sim HB; Murovic JA; Cho BY; Lim TJ; Park J J Neurosurg Spine; 2010 Jun; 12(6):700-8. PubMed ID: 20515358 [TBL] [Abstract][Full Text] [Related]
14. Influence of Dynesys system screw profile on adjacent segment and screw. Liu CL; Zhong ZC; Shih SL; Hung C; Lee YE; Chen CS J Spinal Disord Tech; 2010 Aug; 23(6):410-7. PubMed ID: 20683426 [TBL] [Abstract][Full Text] [Related]
15. Determination of the biomechanical effect of an interspinous process device on implanted and adjacent lumbar spinal segments using a hybrid testing protocol: a finite-element study. Erbulut DU; Zafarparandeh I; Hassan CR; Lazoglu I; Ozer AF J Neurosurg Spine; 2015 Aug; 23(2):200-8. PubMed ID: 25932601 [TBL] [Abstract][Full Text] [Related]
16. Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis. Schmidt H; Galbusera F; Rohlmann A; Zander T; Wilke HJ Eur Spine J; 2012 Jun; 21 Suppl 5(Suppl 5):S663-74. PubMed ID: 20361341 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity of lumbar spine response to follower load and flexion moment: finite element study. Naserkhaki S; El-Rich M Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):550-557. PubMed ID: 27848266 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Chung SK; Kim YE; Wang KC Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the biomechanical effects of lumbar disc degeneration on normal patients and osteoporotic patients: A finite element analysis. Zhang XY; Han Y Med Eng Phys; 2023 Feb; 112():103952. PubMed ID: 36842775 [TBL] [Abstract][Full Text] [Related]
20. Artificial Intervertebral Disc Replacement to Provide Dynamic Stability to the Lumbar Spine: A Finite Element Study. Biswas JK; Roy S; Majumder S; Karmakar SK; Saha S; Roychowdhury A J Long Term Eff Med Implants; 2018; 28(2):101-109. PubMed ID: 30317959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]