These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22225011)

  • 1. Observation of traveling thermoacoustic shock waves (L).
    Biwa T; Takahashi T; Yazaki T
    J Acoust Soc Am; 2011 Dec; 130(6):3558-61. PubMed ID: 22225011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of thermoacoustic shock waves in a resonance tube.
    Biwa T; Sobata K; Otake S; Yazaki T
    J Acoust Soc Am; 2014 Sep; 136(3):965. PubMed ID: 25190371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of energy cascade creating periodic shock waves in a resonator.
    Biwa T; Yazaki T
    J Acoust Soc Am; 2010 Mar; 127(3):1189-92. PubMed ID: 20329816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability analysis of thermally induced spontaneous gas oscillations in straight and looped tubes.
    Ueda Y; Kato C
    J Acoust Soc Am; 2008 Aug; 124(2):851-8. PubMed ID: 18681577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental demonstration of thermoacoustic energy conversion in a resonator.
    Biwa T; Tashiro Y; Mizutani U; Kozuka M; Yazaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066304. PubMed ID: 15244723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient characteristics and stability analysis of standing wave thermoacoustic-piezoelectric harvesters.
    Nouh M; Aldraihem O; Baz A
    J Acoust Soc Am; 2014 Feb; 135(2):669-78. PubMed ID: 25234876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fishbone-like instability in a looped-tube thermoacoustic engine.
    Yu Z; Jaworski AJ; Abduljalil AS
    J Acoust Soc Am; 2010 Oct; 128(4):EL188-94. PubMed ID: 20968324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic characteristics of looped-tube thermoacoustic refrigerators with external and in-built acoustic drivers: A comparative study.
    Chen G; Xu J
    J Acoust Soc Am; 2021 Dec; 150(6):4406. PubMed ID: 34972271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of harmonics in a model of thermoacoustic refrigerator based on an acoustic metamaterial.
    Fan L; Ding J; Zhu JJ; Chen Z; Zhang SY; Zhang H; Li XJ
    J Acoust Soc Am; 2015 Oct; 138(4):EL435-40. PubMed ID: 26520357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aeroacoustically driven thermoacoustic heat pump.
    Slaton WV; Zeegers JC
    J Acoust Soc Am; 2005 Jun; 117(6):3628-35. PubMed ID: 16018466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traveling wave thermoacoustic refrigeration with variable phase-coordinated boundary conditions.
    Callanan J; Adlakha R; Mousa M; Nouh M
    J Acoust Soc Am; 2023 Dec; 154(6):3943-3954. PubMed ID: 38147018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear standing waves in 2-D acoustic resonators.
    Cervenka M; Bednarik M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e773-6. PubMed ID: 16780910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.
    Luo EC; Ling H; Dai W; Yu GY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1507-9. PubMed ID: 16996100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of acoustic particle velocity in a coaxial duct and its application to a traveling-wave thermoacoustic heat engine.
    Morii J; Biwa T; Yazaki T
    Rev Sci Instrum; 2014 Sep; 85(9):094902. PubMed ID: 25273759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoacoustic mixture separation with an axial temperature gradient.
    Geller DA; Swift GW
    J Acoust Soc Am; 2009 May; 125(5):2937-45. PubMed ID: 19425637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of thermoacoustic chaotic oscillations in a looped tube.
    Delage R; Takayama Y; Hyodo H; Biwa T
    Chaos; 2019 Sep; 29(9):093108. PubMed ID: 31575155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biological effects of interacting shock waves. A modeling study of the effects of interacting shock waves using erythrocyte hemolysis].
    Benes J; Stuka C; Fortová H; Chmel J; Sunka P; Klener P
    Sb Lek; 1997; 98(4):277-82. PubMed ID: 9648603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Wave Motions Due to Marangoni Instability.
    Wierschem A; Velarde MG; Linde H; Waldhelm W
    J Colloid Interface Sci; 1999 Apr; 212(2):365-383. PubMed ID: 10092367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation.
    Louisnard O
    Ultrason Sonochem; 2012 Jan; 19(1):56-65. PubMed ID: 21764348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.