These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22225044)

  • 1. Further assessment of forward pressure level for in situ calibration.
    Scheperle RA; Goodman SS; Neely ST
    J Acoust Soc Am; 2011 Dec; 130(6):3882-92. PubMed ID: 22225044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of in-situ calibration methods for quantifying input to the middle ear.
    Lewis JD; McCreery RW; Neely ST; Stelmachowicz PG
    J Acoust Soc Am; 2009 Dec; 126(6):3114-24. PubMed ID: 20000925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pure-Tone Audiometry With Forward Pressure Level Calibration Leads to Clinically-Relevant Improvements in Test-Retest Reliability.
    Lapsley Miller JA; Reed CM; Robinson SR; Perez ZD
    Ear Hear; 2018; 39(5):946-957. PubMed ID: 29470259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of calibration method on distortion-product otoacoustic emission measurements: II. threshold prediction.
    Rogers AR; Burke SR; Kopun JG; Tan H; Neely ST; Gorga MP
    Ear Hear; 2010 Aug; 31(4):546-54. PubMed ID: 20458245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of in situ, sound-level calibration on distortion-product otoacoustic emission variability.
    Scheperle RA; Neely ST; Kopun JG; Gorga MP
    J Acoust Soc Am; 2008 Jul; 124(1):288-300. PubMed ID: 18646977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of standing-wave errors in real-ear sound-level measurements.
    Richmond SA; Kopun JG; Neely ST; Tan H; Gorga MP
    J Acoust Soc Am; 2011 May; 129(5):3134-40. PubMed ID: 21568416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Forward- and Emitted-Pressure Calibrations on the Variability of Otoacoustic Emission Measurements Across Repeated Probe Fits.
    Maxim T; Shera CA; Charaziak KK; Abdala C
    Ear Hear; 2019; 40(6):1345-1358. PubMed ID: 30882535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method to estimate sound energy entering the middle ear.
    Chen S; Deng J; Bian L; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():29-32. PubMed ID: 24109616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of ear canals for audiometry at high frequencies.
    Stevens KN; Berkovitz R; Kidd G; Green DM
    J Acoust Soc Am; 1987 Feb; 81(2):470-84. PubMed ID: 3558965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustics of ear canal measurement of eardrum SPL in simulators.
    Gilman S; Dirks DD
    J Acoust Soc Am; 1986 Sep; 80(3):783-93. PubMed ID: 3760332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of nine methods to estimate ear-canal stimulus levels.
    Souza NN; Dhar S; Neely ST; Siegel JH
    J Acoust Soc Am; 2014 Oct; 136(4):1768-87. PubMed ID: 25324079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evanescent waves in simulated ear canals: Experimental demonstration and method for compensation.
    Siegel JH; Nørgaard KR; Neely ST
    J Acoust Soc Am; 2018 Oct; 144(4):2135. PubMed ID: 30404523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between intensity and pressure as measures of sound level in the ear canal.
    Neely ST; Gorga MP
    J Acoust Soc Am; 1998 Nov; 104(5):2925-34. PubMed ID: 9821338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air-leak effects on ear-canal acoustic absorbance.
    Groon KA; Rasetshwane DM; Kopun JG; Gorga MP; Neely ST
    Ear Hear; 2015 Jan; 36(1):155-63. PubMed ID: 25170779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
    Ravicz ME; Olson ES; Rosowski JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2154-73. PubMed ID: 17902852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in situ calibration for hearing thresholds.
    Withnell RH; Jeng PS; Waldvogel K; Morgenstein K; Allen JB
    J Acoust Soc Am; 2009 Mar; 125(3):1605-11. PubMed ID: 19275318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of the acoustic input impedance of the ear.
    Withnell RH; Gowdy LE
    J Assoc Res Otolaryngol; 2013 Oct; 14(5):611-22. PubMed ID: 23917695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reconsideration of sound calibration in the mouse.
    Pearce M; Richter CP; Cheatham MA
    J Neurosci Methods; 2001 Mar; 106(1):57-67. PubMed ID: 11248341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.
    Keefe DH; Feeney MP; Hunter LL; Fitzpatrick DF
    J Acoust Soc Am; 2017 Jan; 141(1):499. PubMed ID: 28147608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of forward pressure level to minimize the influence of acoustic standing waves during probe-microphone hearing-aid verification.
    McCreery RW; Pittman A; Lewis J; Neely ST; Stelmachowicz PG
    J Acoust Soc Am; 2009 Jul; 126(1):15-24. PubMed ID: 19603858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.