These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22225051)

  • 1. Production of contrast between sibilant fricatives by children with cochlear implants.
    Todd AE; Edwards JR; Litovsky RY
    J Acoust Soc Am; 2011 Dec; 130(6):3969-79. PubMed ID: 22225051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Acoustics of Word-Initial Fricatives and Their Effect on Word-Level Intelligibility in Children With Bilateral Cochlear Implants.
    Reidy PF; Kristensen K; Winn MB; Litovsky RY; Edwards JR
    Ear Hear; 2017; 38(1):42-56. PubMed ID: 27556521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic characteristics of sibilant fricatives and affricates in Mandarin-speaking children with cochlear implants.
    Yang J; Xu L
    J Acoust Soc Am; 2023 Jun; 153(6):3501-3512. PubMed ID: 37378672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of fricative production in French-speaking school-aged children using cochlear implants and children with normal hearing.
    Grandon B; Vilain A
    J Commun Disord; 2020; 86():105996. PubMed ID: 32485648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic characteristics of Arabic pharyngealized obstruents in children with cochlear implants.
    Khwaileh FA; Flipsen P; Hammouri HM; Alzoubi FQ
    J Acoust Soc Am; 2019 Aug; 146(2):893. PubMed ID: 31472526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vowel intelligibility in children with cochlear implants: An acoustic and articulatory study.
    Turgeon C; Trudeau-Fisette P; Fitzpatrick E; Ménard L
    Int J Pediatr Otorhinolaryngol; 2017 Oct; 101():87-96. PubMed ID: 28964317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligibility of Word-Initial Obstruent Consonants in Mandarin-Speaking Prelingually Deafened Children With Cochlear Implants.
    Yang J; Wang X; Yu J; Xu L
    J Speech Lang Hear Res; 2023 Jun; 66(6):2155-2176. PubMed ID: 37208163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Device Limitations on Acquisition of the /t/-/k/ Contrast in Children With Cochlear Implants.
    Johnson AA; Bentley DM; Munson B; Edwards J
    Ear Hear; 2022; 43(2):519-530. PubMed ID: 34456300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fricatives, affricates, and vowels in Croatian children with cochlear implants.
    Mildner V; Liker M
    Clin Linguist Phon; 2008; 22(10-11):845-56. PubMed ID: 18608242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Vocal Emotions Produced by Children With Cochlear Implants Are Perceived by Their Hearing Peers.
    Damm SA; Sis JL; Kulkarni AM; Chatterjee M
    J Speech Lang Hear Res; 2019 Oct; 62(10):3728-3740. PubMed ID: 31589545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speech perception of sine-wave signals by children with cochlear implants.
    Nittrouer S; Kuess J; Lowenstein JH
    J Acoust Soc Am; 2015 May; 137(5):2811-22. PubMed ID: 25994709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A preliminary study of the effects of cochlear implants on the production of sibilants.
    Matthies ML; Svirsky MA; Lane HL; Perkell JS
    J Acoust Soc Am; 1994 Sep; 96(3):1367-73. PubMed ID: 7963001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hearing impairment and vowel production. A comparison between normally hearing, hearing-aided and cochlear implanted Dutch children.
    Verhoeven J; Hide O; De Maeyer S; Gillis S; Gillis S
    J Commun Disord; 2016; 59():24-39. PubMed ID: 26629749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sonority's Effect as a Surface Cue on Lexical Speech Perception of Children With Cochlear Implants.
    Hamza Y; Okalidou A; Kyriafinis G; van Wieringen A
    Ear Hear; 2018; 39(5):992-1007. PubMed ID: 29517521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weighting of cues for fricative place of articulation perception by children wearing cochlear implants.
    Hedrick M; Bahng J; von Hapsburg D; Younger MS
    Int J Audiol; 2011 Aug; 50(8):540-7. PubMed ID: 21604957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vowel Production in Prelingually Deafened Mandarin-Speaking Children With Cochlear Implants.
    Yang J; Xu L
    J Speech Lang Hear Res; 2021 Feb; 64(2):664-682. PubMed ID: 33524265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of speech degradation on top-down repair: phonemic restoration with simulations of cochlear implants and combined electric-acoustic stimulation.
    Başkent D
    J Assoc Res Otolaryngol; 2012 Oct; 13(5):683-92. PubMed ID: 22569838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of word-initial fricatives of Mandarin Chinese in prelingually deafened children with cochlear implants.
    Yang J; Vadlamudi J; Yin Z; Lee CY; Xu L
    Int J Speech Lang Pathol; 2017 Apr; 19(2):153-164. PubMed ID: 27063694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of labial information modifies audiovisual speech perception in cochlear-implanted children.
    Huyse A; Berthommier F; Leybaert J
    Ear Hear; 2013; 34(1):110-21. PubMed ID: 23059850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consonant development in pediatric cochlear implant users who were implanted before 30 months of age.
    Spencer LJ; Guo LY
    J Deaf Stud Deaf Educ; 2013 Jan; 18(1):93-109. PubMed ID: 23143855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.