These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22225055)

  • 21. Relationship between transglottal pressure and fundamental frequency of phonation--study using a rubber model.
    Owaki S; Kataoka H; Shimizu T
    J Voice; 2010 Mar; 24(2):127-32. PubMed ID: 19230603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phonation Threshold Pressure Revisited: Effects of Intrinsic Laryngeal Muscle Activation.
    Azar SS; Chhetri DK
    Laryngoscope; 2022 Jul; 132(7):1427-1432. PubMed ID: 34784055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cooperative regulation of vocal fold morphology and stress by the cricothyroid and thyroarytenoid muscles.
    Deguchi S; Kawahara Y; Takahashi S
    J Voice; 2011 Nov; 25(6):e255-63. PubMed ID: 21550776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thyroarytenoid muscle activity and infraglottic aspect of canine vocal fold vibration.
    Yumoto E; Kadota Y; Kurokawa H
    Arch Otolaryngol Head Neck Surg; 1995 Jul; 121(7):759-64. PubMed ID: 7598853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of adductory force of individual laryngeal muscles in an in vivo canine model.
    Nasri S; Sercarz JA; Azizzadeh B; Kreiman J; Berke GS
    Laryngoscope; 1994 Oct; 104(10):1213-8. PubMed ID: 7934590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of laryngeal nerve stimulation on phonation: a glottographic study using an in vivo canine model.
    Moore DM; Berke GS
    J Acoust Soc Am; 1988 Feb; 83(2):705-15. PubMed ID: 3351129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental studies on the viscoelasticity of the vocal fold.
    Haji T; Mori K; Omori K; Isshiki N
    Acta Otolaryngol; 1992; 112(1):151-9. PubMed ID: 1575031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibration in a self-oscillating vocal fold model with left-right asymmetry in body-layer stiffness.
    Zhang Z
    J Acoust Soc Am; 2010 Nov; 128(5):EL279-85. PubMed ID: 21110539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of phonation in the excised canine larynx.
    Yanagi E; Slavit DH; McCaffrey TV
    Otolaryngol Head Neck Surg; 1991 Oct; 105(4):586-95. PubMed ID: 1762795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of subglottal pressure and neuromuscular activation on fundamental frequency and intensity.
    Chhetri DK; Park SJ
    Laryngoscope; 2016 May; 126(5):1123-30. PubMed ID: 26971707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow-induced oscillations of vocal-fold replicas with tuned extensibility and material properties.
    Luizard P; Bailly L; Yousefi-Mashouf H; Girault R; Orgéas L; Henrich Bernardoni N
    Sci Rep; 2023 Dec; 13(1):22658. PubMed ID: 38114547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control.
    Chhetri DK; Neubauer J; Sofer E; Berry DA
    J Acoust Soc Am; 2014 Apr; 135(4):2052-64. PubMed ID: 25235003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Function of the thyroarytenoid muscle in a canine laryngeal model.
    Choi HS; Berke GS; Ye M; Kreiman J
    Ann Otol Rhinol Laryngol; 1993 Oct; 102(10):769-76. PubMed ID: 8215096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vocal fold vibration in simulated head voice phonation in excised canine larynges.
    Shiotani A; Fukuda H; Kawaida M; Kanzaki J
    Eur Arch Otorhinolaryngol; 1996; 253(6):356-63. PubMed ID: 8858261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current topics in voice production mechanisms.
    Titze IR
    Acta Otolaryngol; 1993 May; 113(3):421-7. PubMed ID: 8517148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A computational study of the effect of vocal-fold asymmetry on phonation.
    Xue Q; Mittal R; Zheng X; Bielamowicz S
    J Acoust Soc Am; 2010 Aug; 128(2):818-27. PubMed ID: 20707451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of vibratory pattern of the vocal folds in the excised canine larynx.
    Yanagi E; McCaffrey TV
    Arch Otolaryngol Head Neck Surg; 1992 Jan; 118(1):30-6. PubMed ID: 1728275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.