These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22225055)

  • 41. Vibratory Dynamics of Four Types of Excised Larynx Phonations.
    Li L; Zhang Y; Calawerts W; Jiang JJ
    J Voice; 2016 Nov; 30(6):649-655. PubMed ID: 26476848
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of glottal closure configuration on vocal efficacy in young normal-speaking women.
    Schneider B; Bigenzahn W
    J Voice; 2003 Dec; 17(4):468-80. PubMed ID: 14740929
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of Cricothyroid Muscle Contraction on Vocal Fold Vibration: Experimental Study with High-Speed Videoendoscopy.
    Ishikawa CC; Pinheiro TG; Hachiya A; Montagnoli AN; Tsuji DH
    J Voice; 2017 May; 31(3):300-306. PubMed ID: 27692725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A quantitative model of voice F0 control.
    Farley GR
    J Acoust Soc Am; 1994 Feb; 95(2):1017-29. PubMed ID: 8132896
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D Reconstruction of Phonatory Glottal Shape and Volume: Effects of Neuromuscular Activation.
    Reddy NK; Schlegel P; Lee Y; Chhetri DK
    Laryngoscope; 2023 Feb; 133(2):357-365. PubMed ID: 35633189
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vocal fold physiology.
    Jiang J; Lin E; Hanson DG
    Otolaryngol Clin North Am; 2000 Aug; 33(4):699-718. PubMed ID: 10918655
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Function of the posterior cricoarytenoid muscle in phonation: in vivo laryngeal model.
    Choi HS; Berke GS; Ye M; Kreiman J
    Otolaryngol Head Neck Surg; 1993 Dec; 109(6):1043-51. PubMed ID: 8265188
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English.
    Monsen RB; Engebretson AM; Vemula NR
    J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003
    [TBL] [Abstract][Full Text] [Related]  

  • 49. THE ROLE OF THE THYROARYTENOID MUSCLE IN REGULATING GLOTTAL AIRFLOW AND GLOTTAL CLOSURE IN AN IN VIVO CANINE LARYNX MODEL.
    Luegmair G; Chhetri DK; Zhang Z
    Proc Meet Acoust; 2014 Oct; 22():. PubMed ID: 34900082
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glottal airflow resistance in excised pig, sheep, and cow larynges.
    Alipour F; Jaiswal S
    J Voice; 2009 Jan; 23(1):40-50. PubMed ID: 18023324
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of temperature on basal tension and thyroarytenoid muscle contraction in an isolated rat glottis model.
    Wang HW; Chu YH; Chao PZ; Lee FP
    Eur Arch Otorhinolaryngol; 2014 Oct; 271(10):2819-23. PubMed ID: 24867062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hirano's cover-body model and its unique laryngeal postures revisited.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2018 Jun; 128(6):1412-1418. PubMed ID: 29152744
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modulating phonation through alteration of vocal fold medial surface contour.
    Mau T; Muhlestein J; Callahan S; Chan RW
    Laryngoscope; 2012 Sep; 122(9):2005-14. PubMed ID: 22865592
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of length and depth of vibration of the vocal folds on the relationship between transglottal pressure and fundamental frequency of phonation in canine larynges.
    Kataoka K; Kitajima K
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):556-61. PubMed ID: 11407847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental analysis of the characteristics of artificial vocal folds.
    Misun V; Svancara P; Vasek M
    J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative Evaluation of the In Vivo Vocal Fold Medial Surface Shape.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    J Voice; 2017 Jul; 31(4):513.e15-513.e23. PubMed ID: 28089390
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of cricothyroid and thyroarytenoid interaction on voice control: Muscle activity, vocal fold biomechanics, flow, and acoustics.
    Movahhedi M; Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2021 Jul; 150(1):29. PubMed ID: 34340476
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
    Xue Q; Zheng X; Mittal R; Bielamowicz S
    J Voice; 2014 Jul; 28(4):411-9. PubMed ID: 24725589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acoustic and perceptual effects of changes in body layer stiffness in symmetric and asymmetric vocal fold models.
    Zhang Z; Kreiman J; Gerratt BR; Garellek M
    J Acoust Soc Am; 2013 Jan; 133(1):453-62. PubMed ID: 23297917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.