These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22225174)

  • 1. An activated scheme for resonance energy transfer in conjugated materials.
    Köse ME
    J Chem Phys; 2011 Dec; 135(24):244512. PubMed ID: 22225174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton migration in conjugated dendrimers: a joint experimental and theoretical study.
    Köse ME; Graf P; Kopidakis N; Shaheen SE; Kim K; Rumbles G
    Chemphyschem; 2009 Dec; 10(18):3285-94. PubMed ID: 19806627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton migration in rigid-rod conjugated polymers: an improved Förster model.
    Hennebicq E; Pourtois G; Scholes GD; Herz LM; Russell DM; Silva C; Setayesh S; Grimsdale AC; Müllen K; Brédas JL; Beljonne D
    J Am Chem Soc; 2005 Apr; 127(13):4744-62. PubMed ID: 15796541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polaron-exciton model of resonance energy transfer.
    Markvart T; Greef R
    J Chem Phys; 2004 Oct; 121(13):6401-5. PubMed ID: 15446938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photophysics of conjugated polymers: interplay between Förster energy migration and defect concentration in shaping a photochemical funnel in PPV.
    Saini S; Bagchi B
    Phys Chem Chem Phys; 2010 Jul; 12(27):7427-33. PubMed ID: 20548994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge carrier mobilities in organic semiconductor crystals based on the spectral overlap.
    Stehr V; Fink RF; Deibel C; Engels B
    J Comput Chem; 2016 Sep; 37(23):2146-56. PubMed ID: 27371816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation energy transfer between closely spaced multichromophoric systems: effects of band mixing and intraband relaxation.
    Didraga C; Malyshev VA; Knoester J
    J Phys Chem B; 2006 Sep; 110(38):18818-27. PubMed ID: 16986872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance energy transfer: spectral overlap, efficiency, and direction.
    Andrews DL; Rodríguez J
    J Chem Phys; 2007 Aug; 127(8):084509. PubMed ID: 17764271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitonic energy level structure and pigment-protein interactions in the recombinant water-soluble chlorophyll protein. II. Spectral hole-burning experiments.
    Pieper J; Rätsep M; Trostmann I; Schmitt FJ; Theiss C; Paulsen H; Eichler HJ; Freiberg A; Renger G
    J Phys Chem B; 2011 Apr; 115(14):4053-65. PubMed ID: 21417356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of Fermi's golden rule through imaging of light emission from atomic silver chains.
    Chen C; Bobisch CA; Ho W
    Science; 2009 Aug; 325(5943):981-5. PubMed ID: 19696347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum master equation approach to the second hyperpolarizability of nanostar dendritic systems.
    Nakano M; Kishi R; Nakagawa N; Nitta T; Yamaguchi K
    J Phys Chem B; 2005 Apr; 109(16):7631-6. PubMed ID: 16851884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium Fermi's Golden Rule Charge Transfer Rate Constants in the Condensed Phase: The Linearized Semiclassical Method vs Classical Marcus Theory.
    Sun X; Geva E
    J Phys Chem A; 2016 May; 120(19):2976-90. PubMed ID: 26452042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond the Förster formulation for resonance energy transfer: the role of dark states.
    Sissa C; Manna AK; Terenziani F; Painelli A; Pati SK
    Phys Chem Chem Phys; 2011 Jul; 13(28):12734-44. PubMed ID: 21677974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge transfer in organic molecules for solar cells: theoretical perspective.
    Zhao Y; Liang W
    Chem Soc Rev; 2012 Feb; 41(3):1075-87. PubMed ID: 22105355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-dependent dynamics of large-DeltaE collisions: highly vibrationally excited azulene (E=20 390 and 38 580 cm(-1)) with CO2.
    Yuan L; Du J; Mullin AS
    J Chem Phys; 2008 Jul; 129(1):014303. PubMed ID: 18624476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact vs. asymptotic spectral densities in the Garg-Onuchic-Ambegaokar charge transfer model and its effect on Fermi's golden rule rate constants.
    Sun X; Geva E
    J Chem Phys; 2016 Jan; 144(4):044106. PubMed ID: 26827201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of the red sites and energy transfer rates in single MEH-PPV chains at low temperature.
    Feist FA; Zickler MF; Basché T
    Chemphyschem; 2011 Jun; 12(8):1499-508. PubMed ID: 21472962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of excited states and relaxation mechanisms in C-phycocyanin.
    Womick JM; Moran AM
    J Phys Chem B; 2009 Dec; 113(48):15771-82. PubMed ID: 19902910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems.
    Lambert C; Nöll G; Schelter J
    Nat Mater; 2002 Sep; 1(1):69-73. PubMed ID: 12618853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of Fermi's Golden Rule.
    Micklitz T; Morningstar A; Altland A; Huse DA
    Phys Rev Lett; 2022 Sep; 129(14):140402. PubMed ID: 36240392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.