These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22225227)

  • 1. A mirror based polar magneto-optical Kerr effect spectroscopy arrangement.
    Arora A; Ghosh S; Sugunakar V
    Rev Sci Instrum; 2011 Dec; 82(12):123903. PubMed ID: 22225227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for eliminating Faraday rotation in cryostat windows in longitudinal magneto-optical Kerr effect measurements.
    Polewko-Klim A; Uba S; Uba L
    Rev Sci Instrum; 2014 Jul; 85(7):073106. PubMed ID: 25085126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polar magneto-optical Kerr effect spectroscopy with a microscope arrangement for studies on 2D materials.
    Das D; Ghosh S
    Rev Sci Instrum; 2024 Aug; 95(8):. PubMed ID: 39145695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magneto-optical Kerr effect spectroscopy--a sensitive tool for investigating the molecular orientation in organic semiconductor films.
    Bräuer B; Fronk M; Lehmann D; Zahn DR; Salvan G
    J Phys Chem B; 2009 Nov; 113(45):14957-61. PubMed ID: 19888764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Invited article: Vector and Bragg Magneto-optical Kerr effect for the analysis of nanostructured magnetic arrays.
    Westphalen A; Lee MS; Remhof A; Zabel H
    Rev Sci Instrum; 2007 Dec; 78(12):121301. PubMed ID: 18163713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct imaging of the magnetization reversal in microwires using all-MOKE microscopy.
    Stupakiewicz A; Chizhik A; Tekielak M; Zhukov A; Gonzalez J; Maziewski A
    Rev Sci Instrum; 2014 Oct; 85(10):103702. PubMed ID: 25362398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray magneto-optical polarization spectroscopy: an analysis from the visible region to the x-ray regime.
    Tesch MF; Gilbert MC; Mertins HC; Bürgler DE; Berges U; Schneider CM
    Appl Opt; 2013 Jun; 52(18):4294-310. PubMed ID: 23842173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High resolution in situ magneto-optic Kerr effect and scanning tunneling microscopy setup with all optical components in UHV.
    Lehnert A; Buluschek P; Weiss N; Giesecke J; Treier M; Rusponi S; Brune H
    Rev Sci Instrum; 2009 Feb; 80(2):023902. PubMed ID: 19256657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field-dependent magneto-optical Kerr effect spectroscopy applied to the magnetic component diagnosis of a rubrene/Ni system.
    Li W; Fronk M; Albrecht M; Franke M; Zahn DR; Salvan G
    Opt Express; 2014 Jul; 22(15):18454-63. PubMed ID: 25089464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ electromagnet with active cooling for real-time magneto-optic Kerr effect spectroscopy.
    Brozyniak A; Mendirek G; Hohage M; Navarro-Quezada A; Zeppenfeld P
    Rev Sci Instrum; 2021 Feb; 92(2):025105. PubMed ID: 33648095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A UHV MOKE magnetometer complementing XMCD-PEEM at the Elettra Synchrotron.
    Genuzio F; Giela T; Lucian M; Menteş TO; Brondin CA; Cautero G; Mazalski P; Bonetti S; Korecki J; Locatelli A
    J Synchrotron Radiat; 2021 May; 28(Pt 3):995-1005. PubMed ID: 33950008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Note: Probing quadratic magneto-optical Kerr effects with a dual-beam system.
    Trudel S; Wolf G; Schultheiss H; Hamrle J; Hillebrands B; Kubota T; Ando Y
    Rev Sci Instrum; 2010 Feb; 81(2):026105. PubMed ID: 20192522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of magneto-optical Kerr effect by surface plasmons in trilayer structure consisting of double-layer dielectrics and ferromagnetic metal.
    Kaihara T; Ando T; Shimizu H; Zayets V; Saito H; Ando K; Yuasa S
    Opt Express; 2015 May; 23(9):11537-55. PubMed ID: 25969248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the time-resolved magneto-optical Kerr effect for ultrafast magnetization dynamics in ferromagnetic thin films.
    Razdolski I; Alekhin A; Martens U; Bürstel D; Diesing D; Münzenberg M; Bovensiepen U; Melnikov A
    J Phys Condens Matter; 2017 May; 29(17):174002. PubMed ID: 28349899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging of rubrene layers in Ni/rubrene heterostructures studied by magneto-optical Kerr effect spectroscopy.
    Li W; Fronk M; Kupfer H; Schulze S; Hietschold M; Zahn DR; Salvan G
    J Am Chem Soc; 2010 Apr; 132(16):5687-92. PubMed ID: 20356093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an in situ magnetoelastic magneto-optical Kerr effect magnetometer.
    Will IG; Ding A; Xu YB
    Rev Sci Instrum; 2012 Jun; 83(6):064707. PubMed ID: 22755651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, fabrication, and performance of enhanced magneto-optic quadrilayers with controllable ellipticity.
    Atkinson R; Salter IW; Xu J
    Appl Opt; 1992 Aug; 31(23):4847-52. PubMed ID: 20725498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A setup combining magneto-optical Kerr effect and conversion electron Mössbauer spectrometry for analysis of the near-surface magnetic properties of thin films.
    Juraszek J; Zivotsky O; Chiron H; Vaudolon C; Teillet J
    Rev Sci Instrum; 2009 Apr; 80(4):043905. PubMed ID: 19405673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magneto-optical Kerr Effect in Ferroelectric Antiferromagnetic Two-Dimensional Heterostructures.
    Ding N; Yananose K; Rizza C; Fan FR; Dong S; Stroppa A
    ACS Appl Mater Interfaces; 2023 May; 15(18):22282-22290. PubMed ID: 37078781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Resolved Magneto-Optical Kerr Effect of Magnetic Thin Films for Ultrafast Thermal Characterization.
    Chen JY; Zhu J; Zhang D; Lattery DM; Li M; Wang JP; Wang X
    J Phys Chem Lett; 2016 Jul; 7(13):2328-32. PubMed ID: 27269127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.