BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 22225275)

  • 1. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element based bladder modeling for image-guided radiotherapy of bladder cancer.
    Chai X; van Herk M; van de Kamer JB; Hulshof MC; Remeijer P; Lotz HT; Bel A
    Med Phys; 2011 Jan; 38(1):142-50. PubMed ID: 21361183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subject specific finite element mesh generation of the pelvis from biplanar x-ray images: application to 120 clinical cases.
    Fougeron N; Rohan PY; Macron A; Travert C; Pillet H; Skalli W
    Comput Methods Biomech Biomed Engin; 2018 Apr; 21(5):408-412. PubMed ID: 29969279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear voxel-based finite element model for strength assessment of healthy and metastatic proximal femurs.
    Sas A; Ohs N; Tanck E; van Lenthe GH
    Bone Rep; 2020 Jun; 12():100263. PubMed ID: 32322609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of multiorgan finite element-based prostate deformation model enabling registration of endorectal coil magnetic resonance imaging for radiotherapy planning.
    Hensel JM; Ménard C; Chung PW; Milosevic MF; Kirilova A; Moseley JL; Haider MA; Brock KK
    Int J Radiat Oncol Biol Phys; 2007 Aug; 68(5):1522-8. PubMed ID: 17674983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.
    Zhang X; Kim D; Shen S; Yuan P; Liu S; Tang Z; Zhang G; Zhou X; Gateno J; Liebschner MAK; Xia JJ
    Biomech Model Mechanobiol; 2018 Apr; 17(2):387-402. PubMed ID: 29027022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model.
    Chai X; van Herk M; Betgen A; Hulshof M; Bel A
    Phys Med Biol; 2012 Jun; 57(12):3945-62. PubMed ID: 22643320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous meshing and biomechanical modeling of human spine.
    Teo JC; Chui CK; Wang ZL; Ong SH; Yan CH; Wang SC; Wong HK; Teoh SH
    Med Eng Phys; 2007 Mar; 29(2):277-90. PubMed ID: 16679044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproducibility of the bladder shape and bladder shape changes during filling.
    Lotz HT; van Herk M; Betgen A; Pos F; Lebesque JV; Remeijer P
    Med Phys; 2005 Aug; 32(8):2590-7. PubMed ID: 16193789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexahedral mesh generation via constrained quadrilateralization.
    Shang F; Gan Y; Guo Y
    PLoS One; 2017; 12(5):e0177603. PubMed ID: 28542355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole.
    Karimi A; Grytz R; Rahmati SM; Girkin CA; Downs JC
    Comput Methods Programs Biomed; 2021 Jan; 198():105794. PubMed ID: 33099262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of high-quality hexahedral human brain meshes using feature-based multi-block approach.
    Mao H; Gao H; Cao L; Genthikatti VV; Yang KH
    Comput Methods Biomech Biomed Engin; 2013; 16(3):271-9. PubMed ID: 22149289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical 3-D finite element modeling of the human breast using MRI data.
    Samani A; Bishop J; Yaffe MJ; Plewes DB
    IEEE Trans Med Imaging; 2001 Apr; 20(4):271-9. PubMed ID: 11370894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.
    Longest PW; Vinchurkar S
    Med Eng Phys; 2007 Apr; 29(3):350-66. PubMed ID: 16814588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastic hexahedral FEM for surgical simulation.
    Gao R; Peters J
    Int J Comput Assist Radiol Surg; 2022 Dec; 17(12):2183-2192. PubMed ID: 36112337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur.
    Ramos A; Simões JA
    Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rectangular tetrahedral adaptive mesh based corotated finite element model for interactive soft tissue simulation.
    Tagawa K; Yamada T; Tanaka HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7164-7. PubMed ID: 24111397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated hexahedral meshing of anatomic structures using deformable registration.
    Grosland NM; Bafna R; Magnotta VA
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):35-43. PubMed ID: 18688764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech Eng; 2008 Oct; 130(5):051010. PubMed ID: 19045517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-hexahedral structured meshing for image-based computational vascular modeling.
    De Santis G; De Beule M; Van Canneyt K; Segers P; Verdonck P; Verhegghe B
    Med Eng Phys; 2011 Dec; 33(10):1318-25. PubMed ID: 21763174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.