BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 22225275)

  • 21. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A semi-automated method for hexahedral mesh construction of human vertebrae from CT scans.
    Dai Y; Niebur GL
    Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):599-606. PubMed ID: 19308870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A biofidelic computational model of the female pelvic system to understand effect of bladder fill and progressive vaginal tissue stiffening due to prolapse on anterior vaginal wall.
    Chanda A; Unnikrishnan V; Richter HE; Lockhart ME
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26732347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Creating fast finite element models from medical images.
    Berkley J; Oppenheimer P; Weghorst S; Berg D; Raugi G; Haynor D; Ganter M; Brooking C; Turkiyyah G
    Stud Health Technol Inform; 2000; 70():26-32. PubMed ID: 10977554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element study of human pelvis model in side impact for Chinese adult occupants.
    Ma Z; Lan F; Chen J; Liu W
    Traffic Inj Prev; 2015; 16(4):409-17. PubMed ID: 25133596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computation for biomechanical analysis of aortic aneurysms: the importance of computational grid.
    Alkhatib F; Wittek A; Zwick BF; Bourantas GC; Miller K
    Comput Methods Biomech Biomed Engin; 2024 Jun; 27(8):994-1010. PubMed ID: 37264784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical modeling constrained surface-based image registration for prostate MR guided TRUS biopsy.
    van de Ven WJ; Hu Y; Barentsz JO; Karssemeijer N; Barratt D; Huisman HJ
    Med Phys; 2015 May; 42(5):2470-81. PubMed ID: 25979040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human liver finite element model validation using compressive and tensile experimental data - biomed 2013.
    Davis ML; Moreno DP; Vavalle NA; Gayzik FS
    Biomed Sci Instrum; 2013; 49():289-96. PubMed ID: 23686212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semiautomatic bladder segmentation on CBCT using a population-based model for multiple-plan ART of bladder cancer.
    Chai X; van Herk M; Betgen A; Hulshof M; Bel A
    Phys Med Biol; 2012 Dec; 57(24):N525-41. PubMed ID: 23190683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative study on different methods of automatic mesh generation of human femurs.
    Viceconti M; Bellingeri L; Cristofolini L; Toni A
    Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite element model development of a child pelvis with optimization-based material identification.
    Kim JE; Li Z; Ito Y; Huber CD; Shih AM; Eberhardt AW; Yang KH; King AI; Soni BK
    J Biomech; 2009 Sep; 42(13):2191-5. PubMed ID: 19646702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear.
    Tadepalli SC; Erdemir A; Cavanagh PR
    J Biomech; 2011 Aug; 44(12):2337-43. PubMed ID: 21742332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesh adaptation for improving elasticity reconstruction using the FEM inverse problem.
    Goksel O; Eskandari H; Salcudean SE
    IEEE Trans Med Imaging; 2013 Feb; 32(2):408-18. PubMed ID: 23192522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Fast automated finite element mesh generation of residual lower limb for clinical application].
    Jiang WT; Fan YB; Pu F; Zhang M; Zheng YP; Chen JK
    Space Med Med Eng (Beijing); 2002 Aug; 15(4):286-90. PubMed ID: 12425337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of deep learning-based lesion segmentation on failure load calculations of metastatic femurs using finite element analysis.
    Ataei A; Eggermont F; Verdonschot N; Lessmann N; Tanck E
    Bone; 2024 Feb; 179():116987. PubMed ID: 38061504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated finite-element analysis for deformable registration of prostate images.
    Crouch JR; Pizer SM; Chaney EL; Hu YC; Mageras GS; Zaider M
    IEEE Trans Med Imaging; 2007 Oct; 26(10):1379-90. PubMed ID: 17948728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A finite element model of the cardiac ventricles with coupled circulation: Biventricular mesh generation with hexahedral elements, airbags and a functional mockup interface to the circulation.
    Zhang Y; Adams J; Wang VY; Horwitz L; Tartibi M; Morgan AE; Kim J; Wallace AW; Weinsaft JW; Ge L; Ratcliffe MB
    Comput Biol Med; 2021 Oct; 137():104840. PubMed ID: 34508972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
    Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P
    J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growing multiblock structures: a semi-automated approach to block placement for multiblock hexahedral meshing.
    Ramme AJ; Shivanna KH; Criswell AJ; Kallemeyn NA; Magnotta VA; Grosland NM
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1043-52. PubMed ID: 21547780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.