These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 22225284)
1. Antiscatter grids in mobile C-arm cone-beam CT: effect on image quality and dose. Schafer S; Stayman JW; Zbijewski W; Schmidgunst C; Kleinszig G; Siewerdsen JH Med Phys; 2012 Jan; 39(1):153-9. PubMed ID: 22225284 [TBL] [Abstract][Full Text] [Related]
2. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid. Stankovic U; van Herk M; Ploeger LS; Sonke JJ Med Phys; 2014 Jun; 41(6):061910. PubMed ID: 24877821 [TBL] [Abstract][Full Text] [Related]
3. The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors. Siewerdsen JH; Moseley DJ; Bakhtiar B; Richard S; Jaffray DA Med Phys; 2004 Dec; 31(12):3506-20. PubMed ID: 15651634 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions. Sisniega A; Zbijewski W; Badal A; Kyprianou IS; Stayman JW; Vaquero JJ; Siewerdsen JH Med Phys; 2013 May; 40(5):051915. PubMed ID: 23635285 [TBL] [Abstract][Full Text] [Related]
6. Mobile C-arm cone-beam CT for guidance of spine surgery: image quality, radiation dose, and integration with interventional guidance. Schafer S; Nithiananthan S; Mirota DJ; Uneri A; Stayman JW; Zbijewski W; Schmidgunst C; Kleinszig G; Khanna AJ; Siewerdsena JH Med Phys; 2011 Aug; 38(8):4563-74. PubMed ID: 21928628 [TBL] [Abstract][Full Text] [Related]
7. Intraoperative cone-beam and slot-beam CT: 3D image quality and dose with a slot collimator on the O-arm imaging system. Zhang X; Zbijewski W; Huang Y; Uneri A; Jones CK; Lo SL; Witham TF; Luciano M; Anderson WS; Helm PA; Siewerdsen JH Med Phys; 2021 Nov; 48(11):6800-6809. PubMed ID: 34519364 [TBL] [Abstract][Full Text] [Related]
8. Efficiency of antiscatter grids for flat-detector CT. Kyriakou Y; Kalender W Phys Med Biol; 2007 Oct; 52(20):6275-93. PubMed ID: 17921585 [TBL] [Abstract][Full Text] [Related]
9. A novel total variation based ring artifact suppression method for CBCT imaging with two-dimensional antiscatter grids. Alexeev T; Kavanagh B; Miften M; Altunbas C Med Phys; 2019 May; 46(5):2181-2193. PubMed ID: 30802970 [TBL] [Abstract][Full Text] [Related]
10. Two-dimensional antiscatter grid: A novel scatter rejection device for Cone-beam computed tomography. Alexeev T; Kavanagh B; Miften M; Altunbas C Med Phys; 2018 Feb; 45(2):529-534. PubMed ID: 29235120 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of scatter rejection and correction performance of 2D antiscatter grids in cone beam computed tomography. Park Y; Alexeev T; Miller B; Miften M; Altunbas C Med Phys; 2021 Apr; 48(4):1846-1858. PubMed ID: 33554377 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of soft-tissue contrast in cone-beam CT using an anti-scatter grid with a sparse sampling approach. Cho S; Lim S; Kim C; Wi S; Kwon T; Youn WS; Lee SH; Kang BS; Cho S Phys Med; 2020 Feb; 70():1-9. PubMed ID: 31931280 [TBL] [Abstract][Full Text] [Related]
13. A unified scatter rejection and correction method for cone beam computed tomography. Altunbas C; Park Y; Yu Z; Gopal A Med Phys; 2021 Mar; 48(3):1211-1225. PubMed ID: 33378551 [TBL] [Abstract][Full Text] [Related]
14. A dedicated cone-beam CT system for musculoskeletal extremities imaging: design, optimization, and initial performance characterization. Zbijewski W; De Jean P; Prakash P; Ding Y; Stayman JW; Packard N; Senn R; Yang D; Yorkston J; Machado A; Carrino JA; Siewerdsen JH Med Phys; 2011 Aug; 38(8):4700-13. PubMed ID: 21928644 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of a two-dimensional Moire-free antiscatter grid for cone-beam computed tomography. Kim J; Kang Y; Hwang T; Park M; Chung W Med Phys; 2023 Jun; 50(6):3435-3444. PubMed ID: 36748167 [TBL] [Abstract][Full Text] [Related]
16. Effect of grid geometry on the transmission properties of 2D grids for flat detectors in CBCT. Altunbas C; Alexeev T; Miften M; Kavanagh B Phys Med Biol; 2019 Nov; 64(22):225006. PubMed ID: 31585444 [TBL] [Abstract][Full Text] [Related]
17. Cone-beam breast computed tomography with a displaced flat panel detector array. Mettivier G; Russo P; Lanconelli N; Meo SL Med Phys; 2012 May; 39(5):2805-19. PubMed ID: 22559652 [TBL] [Abstract][Full Text] [Related]
18. A mobile isocentric C-arm for intraoperative cone-beam CT: Technical assessment of dose and 3D imaging performance. Sheth NM; De Silva T; Uneri A; Ketcha M; Han R; Vijayan R; Osgood GM; Siewerdsen JH Med Phys; 2020 Mar; 47(3):958-974. PubMed ID: 31863480 [TBL] [Abstract][Full Text] [Related]
19. A quantitative CBCT pipeline based on 2D antiscatter grid and grid-based scatter sampling for image-guided radiation therapy. Bayat F; Ruan D; Miften M; Altunbas C Med Phys; 2023 Dec; 50(12):7980-7995. PubMed ID: 37665760 [TBL] [Abstract][Full Text] [Related]
20. Concurrent kilovoltage CBCT imaging and megavoltage beam delivery: suppression of cross-scatter with 2D antiscatter grids and grid-based scatter sampling. Bayat F; Eldib ME; Kavanagh B; Miften M; Altunbas C Phys Med Biol; 2022 Aug; 67(16):. PubMed ID: 35853441 [No Abstract] [Full Text] [Related] [Next] [New Search]