These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22225373)

  • 1. Eikonal-based initiation of fibrillatory activity in thin-walled cardiac propagation models.
    Herlin A; Jacquemet V
    Chaos; 2011 Dec; 21(4):043136. PubMed ID: 22225373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automated initiation of simulated episodes of atrial arrhythmias.
    Matene E; Jacquemet V
    Europace; 2012 Nov; 14 Suppl 5():v17-v24. PubMed ID: 23104910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An eikonal approach for the initiation of reentrant cardiac propagation in reaction-diffusion models.
    Jacquemet V
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2090-8. PubMed ID: 20515704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple wavelets, rotors, and snakes in atrial fibrillation--a computer simulation study.
    Reumann M; Bohnert J; Osswald B; Hagl S; Doessel O
    J Electrocardiol; 2007 Oct; 40(4):328-34. PubMed ID: 17336996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An eikonal-diffusion solver and its application to the interpolation and the simulation of reentrant cardiac activations.
    Jacquemet V
    Comput Methods Programs Biomed; 2012 Nov; 108(2):548-58. PubMed ID: 21719141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computer simulation study: the role of multiple wavelets, rotors, and snakes in initiation and maintenance of atrial fibrillation.
    Haghjoo M
    J Electrocardiol; 2007 Oct; 40(4):335.e1. PubMed ID: 17599475
    [No Abstract]   [Full Text] [Related]  

  • 7. Vortex filament dynamics in computational models of ventricular fibrillation in the heart.
    Clayton RH
    Chaos; 2008 Dec; 18(4):043127. PubMed ID: 19123637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing measured and simulated wave directions in the left atrium - a workflow for model personalization and validation.
    Burdumy M; Luik A; Neher P; Hanna R; Krueger MW; Schilling C; Barschdorf H; Lorenz C; Seemann G; Schmitt C; Doessel O; Weber FM
    Biomed Tech (Berl); 2012 Feb; 57(2):79-87. PubMed ID: 22505490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of synchronization during atrial fibrillation by Shannon entropy: validation in patients and computer model of atrial arrhythmias.
    Masè M; Faes L; Antolini R; Scaglione M; Ravelli F
    Physiol Meas; 2005 Dec; 26(6):911-23. PubMed ID: 16311441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Far-field contributions in multi-electrodes atrial recordings blur distinction between anatomical and functional reentries and may cause imaginary phase singularities - A computational study.
    Martinez-Mateu L; Romero L; Saiz J; Berenfeld O
    Comput Biol Med; 2019 May; 108():276-287. PubMed ID: 31015048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear oscillator model reproducing various phenomena in the dynamics of the conduction system of the heart.
    Zebrowski JJ; Grudziński K; Buchner T; Kuklik P; Gac J; Gielerak G; Sanders P; Baranowski R
    Chaos; 2007 Mar; 17(1):015121. PubMed ID: 17411278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the hyperpolarization-activated inward current If in arrhythmogenesis: a computer model study.
    Kuijpers NH; Keldermann RH; ten Eikelder HM; Arts T; Hilbers PA
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1499-511. PubMed ID: 16916084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computer model of endo-epicardial electrical dissociation and transmural conduction during atrial fibrillation.
    Gharaviri A; Verheule S; Eckstein J; Potse M; Kuijpers NH; Schotten U
    Europace; 2012 Nov; 14 Suppl 5():v10-v16. PubMed ID: 23104905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genesis of the P wave: atrial signals as generated by the equivalent double layer source model.
    van Oosterom A; Jacquemet V
    Europace; 2005 Sep; 7 Suppl 2():21-9. PubMed ID: 16102500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal patterns of atrial fibrillation: role of the subendocardial structure.
    Skanes AC; Gray RA; Zuur CL; Jalife J
    Semin Interv Cardiol; 1997 Dec; 2(4):185-93. PubMed ID: 9704352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A condition for setting off ectopic waves in computational models of excitable cells.
    Tveito A; Lines GT
    Math Biosci; 2008 Jun; 213(2):141-50. PubMed ID: 18539188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave propagation in the atrial myocardium: dispersion properties in the normal state and before fibrillation.
    Anosov O; Berdyshev S; Khassanov I; Schaldach M; Hensel B
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1642-5. PubMed ID: 12549748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epicardial fiber organization in swine right ventricle and its impact on propagation.
    Vetter FJ; Simons SB; Mironov S; Hyatt CJ; Pertsov AM
    Circ Res; 2005 Feb; 96(2):244-51. PubMed ID: 15618536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
    Kléber AG; Rudy Y
    Physiol Rev; 2004 Apr; 84(2):431-88. PubMed ID: 15044680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.