BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22225525)

  • 21. G-Quadruplex loops regulate PARP-1 enzymatic activation.
    Edwards AD; Marecki JC; Byrd AK; Gao J; Raney KD
    Nucleic Acids Res; 2021 Jan; 49(1):416-431. PubMed ID: 33313902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methods for investigating G-quadruplex DNA/ligand interactions.
    Murat P; Singh Y; Defrancq E
    Chem Soc Rev; 2011 Nov; 40(11):5293-307. PubMed ID: 21720638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. G-quadruplex motifs arranged in tandem occurring in telomeric repeats and the insulin-linked polymorphic region.
    Bauer L; Tlučková K; Tóhová P; Viglaský V
    Biochemistry; 2011 Sep; 50(35):7484-92. PubMed ID: 21819151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A small molecule that disrupts G-quadruplex DNA structure and enhances gene expression.
    Waller ZA; Sewitz SA; Hsu ST; Balasubramanian S
    J Am Chem Soc; 2009 Sep; 131(35):12628-33. PubMed ID: 19689109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel splicing in IGFN1 intron 15 and role of stable G-quadruplex in the regulation of splicing in renal cell carcinoma.
    Verma SP; Das P
    PLoS One; 2018; 13(10):e0205660. PubMed ID: 30335789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-Molecule Investigations of G-Quadruplex.
    Mandal S; Hoque ME; Mao H
    Methods Mol Biol; 2019; 2035():275-298. PubMed ID: 31444756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystallographic studies of quadruplex nucleic acids.
    Campbell NH; Parkinson GN
    Methods; 2007 Dec; 43(4):252-63. PubMed ID: 17967696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissecting the strand folding orientation and formation of G-quadruplexes in single- and double-stranded nucleic acids by ligand-induced photocleavage footprinting.
    Zheng KW; Zhang D; Zhang LX; Hao YH; Zhou X; Tan Z
    J Am Chem Soc; 2011 Feb; 133(5):1475-83. PubMed ID: 21207997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stabilization of G-quadruplex DNA and inhibition of Bcl-2 expression by a pyridostatin analog.
    Feng Y; Yang D; Chen H; Cheng W; Wang L; Sun H; Tang Y
    Bioorg Med Chem Lett; 2016 Apr; 26(7):1660-3. PubMed ID: 26923693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybridization of G-quadruplex-forming peptide nucleic acids to guanine-rich DNA templates inhibits DNA polymerase η extension.
    Murphy CT; Gupta A; Armitage BA; Opresko PL
    Biochemistry; 2014 Aug; 53(32):5315-22. PubMed ID: 25068499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding ligand interaction with different structures of G-quadruplex DNA: evidence of kinetically controlled ligand binding and binding-mode assisted quadruplex structure alteration.
    Verma SD; Pal N; Singh MK; Shweta H; Khan MF; Sen S
    Anal Chem; 2012 Aug; 84(16):7218-26. PubMed ID: 22816788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery and Structural Characterization of G-quadruplex DNA in Human Acetyl-CoA Carboxylase Gene Promoters: Its Role in Transcriptional Regulation and as a Therapeutic Target for Human Disease.
    Kaulage M; Maji B; Bhat J; Iwasaki Y; Chatterjee S; Bhattacharya S; Muniyappa K
    J Med Chem; 2016 May; 59(10):5035-50. PubMed ID: 27058681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. G-quadruplex structures are stable and detectable in human genomic DNA.
    Lam EY; Beraldi D; Tannahill D; Balasubramanian S
    Nat Commun; 2013; 4():1796. PubMed ID: 23653208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. G4LDB: a database for discovering and studying G-quadruplex ligands.
    Li Q; Xiang JF; Yang QF; Sun HX; Guan AJ; Tang YL
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D1115-23. PubMed ID: 23161677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designing a New Class of Bases for Nucleic Acid Quadruplexes and Quadruplex-Active Ligands.
    Bazzi S; Novotný J; Yurenko YP; Marek R
    Chemistry; 2015 Jun; 21(26):9414-25. PubMed ID: 26032561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of DNA:RNA hybrid G-quadruplex in bacterial cells and its dominance over the intramolecular DNA G-quadruplex in mediating transcription termination.
    Wu RY; Zheng KW; Zhang JY; Hao YH; Tan Z
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2447-51. PubMed ID: 25613367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands.
    Koirala D; Dhakal S; Ashbridge B; Sannohe Y; Rodriguez R; Sugiyama H; Balasubramanian S; Mao H
    Nat Chem; 2011 Aug; 3(10):782-7. PubMed ID: 21941250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In the sense of transcription regulation by G-quadruplexes: asymmetric effects in sense and antisense strands.
    Agarwal T; Roy S; Kumar S; Chakraborty TK; Maiti S
    Biochemistry; 2014 Jun; 53(23):3711-8. PubMed ID: 24850370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mass spectrometry of G-quadruplex DNA: formation, recognition, property, conversion, and conformation.
    Yuan G; Zhang Q; Zhou J; Li H
    Mass Spectrom Rev; 2011; 30(6):1121-42. PubMed ID: 21520218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.
    Roy S; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Biochemistry; 2007 Sep; 46(37):10433-43. PubMed ID: 17718513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.