These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22225607)

  • 1. A comprehensive approach to the design of ethanol supply chains including carbon trading effects.
    Giarola S; Shah N; Bezzo F
    Bioresour Technol; 2012 Mar; 107():175-85. PubMed ID: 22225607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofuels carbon footprints: Whole-systems optimisation for GHG emissions reduction.
    Zamboni A; Murphy RJ; Woods J; Bezzo F; Shah N
    Bioresour Technol; 2011 Aug; 102(16):7457-65. PubMed ID: 21641206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal design of ethanol supply chains considering carbon trading effects and multiple technologies for side-product exploitation.
    Ortiz-Gutiérrez RA; Giarola S; Bezzo F
    Environ Technol; 2013; 34(13-16):2189-99. PubMed ID: 24350473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term bioethanol system and its implications on GHG emissions: a case study of Thailand.
    Silalertruksa T; Gheewala SH
    Environ Sci Technol; 2011 Jun; 45(11):4920-8. PubMed ID: 21528843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives.
    Singh A; Pant D; Korres NE; Nizami AS; Prasad S; Murphy JD
    Bioresour Technol; 2010 Jul; 101(13):5003-12. PubMed ID: 20015644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.
    McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL
    Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass Cost Index: mapping biomass-to-biohydrogen feedstock costs by a new approach.
    Diamantopoulou LK; Karaoglanoglou LS; Koukios EG
    Bioresour Technol; 2011 Feb; 102(3):2641-50. PubMed ID: 21074419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe.
    Bright RM; Strømman AH
    Environ Sci Technol; 2010 Apr; 44(7):2261-9. PubMed ID: 20163088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels.
    Spatari S; MacLean HL
    Environ Sci Technol; 2010 Nov; 44(22):8773-80. PubMed ID: 20979408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biorefinery for mobility?
    Pacca S; Moreira JR
    Environ Sci Technol; 2011 Nov; 45(22):9498-505. PubMed ID: 21967671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated strategic and tactical biomass-biofuel supply chain optimization.
    Lin T; Rodríguez LF; Shastri YN; Hansen AC; Ting KC
    Bioresour Technol; 2014 Mar; 156():256-66. PubMed ID: 24508904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioethanol from lignocellulosics: Status and perspectives in Canada.
    Mabee WE; Saddler JN
    Bioresour Technol; 2010 Jul; 101(13):4806-13. PubMed ID: 20006494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key technologies for bioethanol production from lignocellulose.
    Chen H; Qiu W
    Biotechnol Adv; 2010; 28(5):556-62. PubMed ID: 20546879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of biofuels: energy and greenhouse gas balances.
    Gnansounou E; Dauriat A; Villegas J; Panichelli L
    Bioresour Technol; 2009 Nov; 100(21):4919-30. PubMed ID: 19553106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.
    Mullins KA; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Jan; 45(1):132-8. PubMed ID: 21121672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of environmental aspects in modelling and optimisation of water supply chains.
    Koleva MN; Calderón AJ; Zhang D; Styan CA; Papageorgiou LG
    Sci Total Environ; 2018 Sep; 636():314-338. PubMed ID: 29709850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and modeling of sustainable bioethanol supply chain by minimizing the total ecological footprint in life cycle perspective.
    Ren J; Manzardo A; Toniolo S; Scipioni A; Tan S; Dong L; Gao S
    Bioresour Technol; 2013 Oct; 146():771-774. PubMed ID: 23978606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating Hybrid Life Cycle Assessment with Multiobjective Optimization: A Modeling Framework.
    Yue D; Pandya S; You F
    Environ Sci Technol; 2016 Feb; 50(3):1501-9. PubMed ID: 26752618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating multimodal transport into cellulosic biofuel supply chain design under feedstock seasonality with a case study based on California.
    Xie F; Huang Y; Eksioglu S
    Bioresour Technol; 2014; 152():15-23. PubMed ID: 24275021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.