These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22225707)

  • 1. Methyl chloride emissions from halophyte leaf litter: dependence on temperature and chloride content.
    Derendorp L; Wishkerman A; Keppler F; McRoberts C; Holzinger R; Röckmann T
    Chemosphere; 2012 Apr; 87(5):483-9. PubMed ID: 22225707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The distinctive isotopic signature of plant-derived chloromethane: possible application in constraining the atmospheric chloromethane budget.
    Harper DB; Hamilton JT; Ducrocq V; Kennedy JT; Downey A; Kalin RM
    Chemosphere; 2003 Jul; 52(2):433-6. PubMed ID: 12738266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl chloride and the U.S. cigarette.
    Novak BJ; Meinardi S; Blake DR
    Nicotine Tob Res; 2008 Nov; 10(11):1621-5. PubMed ID: 18988074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of temperature and soil moisture on methyl halide and chloroform fluxes from drained peatland pasture soils.
    Khan MA; Whelan ME; Rhew RC
    J Environ Monit; 2012 Jan; 14(1):241-9. PubMed ID: 22064943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong emission of methyl chloride from tropical plants.
    Yokouchi Y; Ikeda M; Inuzuka Y; Yukawa T
    Nature; 2002 Mar; 416(6877):163-5. PubMed ID: 11894090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloride methylation by plant pectin: an efficient environmentally significant process.
    Hamilton JT; McRoberts WC; Keppler F; Kalin RM; Harper DB
    Science; 2003 Jul; 301(5630):206-9. PubMed ID: 12855805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural methyl bromide and methyl chloride emissions from coastal salt marshes.
    Rhew RC; Miller BR; Weiss RF
    Nature; 2000 Jan; 403(6767):292-5. PubMed ID: 10659844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emissions of nitric oxide from 79 plant species in response to simulated nitrogen deposition.
    Chen J; Wu FH; Liu TW; Chen L; Xiao Q; Dong XJ; He JX; Pei ZM; Zheng HL
    Environ Pollut; 2012 Jan; 160(1):192-200. PubMed ID: 22035944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of methyl chloride-emitting plants and atmospheric measurements on a subtropical island.
    Yokouchi Y; Saito T; Ishigaki C; Aramoto M
    Chemosphere; 2007 Sep; 69(4):549-53. PubMed ID: 17462706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenic volatile organic compound emission potential of forests and paddy fields in the Kinki region of Japan.
    Bao H; Kondo A; Kaga A; Tada M; Sakaguti K; Inoue Y; Shimoda Y; Narumi D; Machimura T
    Environ Res; 2008 Feb; 106(2):156-69. PubMed ID: 18023428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abiotic methyl bromide formation from vegetation, and its strong dependence on temperature.
    Wishkerman A; Gebhardt S; McRoberts CW; Hamilton JT; Williams J; Keppler F
    Environ Sci Technol; 2008 Sep; 42(18):6837-42. PubMed ID: 18853797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.
    Tang X; Wilson SR; Solomon KR; Shao M; Madronich S
    Photochem Photobiol Sci; 2011 Feb; 10(2):280-91. PubMed ID: 21253665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature.
    Loreto F; Barta C; Brilli F; Nogues I
    Plant Cell Environ; 2006 Sep; 29(9):1820-8. PubMed ID: 16913871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress.
    Qaderi MM; Reid DM
    Physiol Plant; 2009 Oct; 137(2):139-47. PubMed ID: 19678898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources and sinks of chloromethane in a salt marsh ecosystem: constraints from concentration and stable isotope measurements of laboratory incubation experiments.
    Keppler F; Röhling AN; Jaeger N; Schroll M; Hartmann SC; Greule M
    Environ Sci Process Impacts; 2020 Mar; 22(3):627-641. PubMed ID: 32080692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions.
    Tie X; Li G; Ying Z; Guenther A; Madronich S
    Sci Total Environ; 2006 Dec; 371(1-3):238-51. PubMed ID: 17027064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon isotope ratios for chloromethane of biological origin: potential tool in determining biological emissions.
    Harper DB; Kalin RM; Hamilton JT; Lamb C
    Environ Sci Technol; 2001 Sep; 35(18):3616-9. PubMed ID: 11783636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum.
    Redondo-Gómez S; Mateos-Naranjo E; Figueroa ME; Davy AJ
    Plant Biol (Stuttg); 2010 Jan; 12(1):79-87. PubMed ID: 20653890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple effects and uncertainties of emission control policies in China: Implications for public health, soil acidification, and global temperature.
    Zhao Y; McElroy MB; Xing J; Duan L; Nielsen CP; Lei Y; Hao J
    Sci Total Environ; 2011 Nov; 409(24):5177-87. PubMed ID: 21944199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.