These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 22226194)
1. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus. Okamoto K; Kanawaku R; Masumoto M; Yanase H Enzyme Microb Technol; 2012 Feb; 50(2):96-100. PubMed ID: 22226194 [TBL] [Abstract][Full Text] [Related]
2. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Okamoto K; Nitta Y; Maekawa N; Yanase H Enzyme Microb Technol; 2011 Mar; 48(3):273-7. PubMed ID: 22112911 [TBL] [Abstract][Full Text] [Related]
3. Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. Okamoto K; Uchii A; Kanawaku R; Yanase H Springerplus; 2014; 3():121. PubMed ID: 24624317 [TBL] [Abstract][Full Text] [Related]
4. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Saitoh S; Hasunuma T; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354 [TBL] [Abstract][Full Text] [Related]
5. Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Rasmussen ML; Shrestha P; Khanal SK; Pometto AL; Hans van Leeuwen J Bioresour Technol; 2010 May; 101(10):3526-33. PubMed ID: 20096573 [TBL] [Abstract][Full Text] [Related]
6. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Kamei I; Hirota Y; Mori T; Hirai H; Meguro S; Kondo R Bioresour Technol; 2012 May; 112():137-42. PubMed ID: 22425400 [TBL] [Abstract][Full Text] [Related]
7. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related]
8. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Agbogbo FK; Coward-Kelly G Biotechnol Lett; 2008 Sep; 30(9):1515-24. PubMed ID: 18431677 [TBL] [Abstract][Full Text] [Related]
9. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Madhavan A; Srivastava A; Kondo A; Bisaria VS Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601 [TBL] [Abstract][Full Text] [Related]
10. Fermentation of biologically pretreated wheat straw for ethanol production: comparison of fermentative microorganisms and process configurations. López-Abelairas M; Lu-Chau TA; Lema JM Appl Biochem Biotechnol; 2013 Aug; 170(8):1838-52. PubMed ID: 23754562 [TBL] [Abstract][Full Text] [Related]
11. Improved ethanol and reduced xylitol production from glucose and xylose mixtures by the mutant strain of Candida shehatae ATCC 22984. Li Y; Park JY; Shiroma R; Ike M; Tokuyasu K Appl Biochem Biotechnol; 2012 Apr; 166(7):1781-90. PubMed ID: 22328261 [TBL] [Abstract][Full Text] [Related]
12. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of a Trichodermastrain capable of fermenting cellulose to ethanol. Stevenson DM; Weimer PJ Appl Microbiol Biotechnol; 2002 Sep; 59(6):721-6. PubMed ID: 12226731 [TBL] [Abstract][Full Text] [Related]
14. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550 [TBL] [Abstract][Full Text] [Related]
15. Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Robak K; Balcerek M Microbiol Res; 2020 Nov; 240():126534. PubMed ID: 32683278 [TBL] [Abstract][Full Text] [Related]
18. Lactic acid production from xylose by the fungus Rhizopus oryzae. Maas RH; Bakker RR; Eggink G; Weusthuis RA Appl Microbiol Biotechnol; 2006 Oct; 72(5):861-8. PubMed ID: 16528511 [TBL] [Abstract][Full Text] [Related]
19. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110 [TBL] [Abstract][Full Text] [Related]
20. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]