BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 22226194)

  • 41. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation.
    Chu BC; Lee H
    Biotechnol Adv; 2007; 25(5):425-41. PubMed ID: 17524590
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass.
    Dien BS; Nichols NN; O'Bryan PJ; Bothast RJ
    Appl Biochem Biotechnol; 2000; 84-86():181-96. PubMed ID: 10849788
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production.
    Doran-Peterson J; Jangid A; Brandon SK; DeCrescenzo-Henriksen E; Dien B; Ingram LO
    Methods Mol Biol; 2009; 581():263-80. PubMed ID: 19768628
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2.
    Rodrussamee N; Sattayawat P; Yamada M
    BMC Microbiol; 2018 Jul; 18(1):73. PubMed ID: 30005621
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fusarium oxysporum: status in bioethanol production.
    Singh A; Kumar PK
    Crit Rev Biotechnol; 1991; 11(2):129-47. PubMed ID: 1913845
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Production of astaxanthin from cellulosic biomass sugars by mutants of the yeast Phaffia rhodozyma.
    Montanti J; Nghiem NP; Johnston DB
    Appl Biochem Biotechnol; 2011 Jul; 164(5):655-65. PubMed ID: 21274657
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation.
    Lee JW; Rodrigues RC; Kim HJ; Choi IG; Jeffries TW
    Bioresour Technol; 2010 Jun; 101(12):4379-85. PubMed ID: 20188541
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555.
    Kim S; Park JM; Kim CH
    Appl Biochem Biotechnol; 2013 Mar; 169(5):1531-45. PubMed ID: 23322254
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production.
    Gong Z; Wang Q; Shen H; Hu C; Jin G; Zhao ZK
    Bioresour Technol; 2012 Aug; 117():20-4. PubMed ID: 22609709
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heterologous expression of transaldolase gene Tal from Saccharomyces cerevisiae in Fusarium oxysporum for enhanced bioethanol production.
    Fan JX; Yang XX; Song JZ; Huang XM; Cheng ZX; Yao L; Juba OS; Liang Q; Yang Q; Odeph M; Sun Y; Wang Y
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1023-36. PubMed ID: 21394668
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag.
    Slininger PJ; Thompson SR; Weber S; Liu ZL; Moon J
    Biotechnol Bioeng; 2011 Aug; 108(8):1801-15. PubMed ID: 21370229
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60.
    Kamei I; Hirota Y; Meguro S
    Bioresour Technol; 2012 Dec; 126():137-41. PubMed ID: 23073100
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp. XE-1.
    Pang ZW; Liang JJ; Huang RB
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):927-33. PubMed ID: 20824485
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400.
    Ohgren K; Bengtsson O; Gorwa-Grauslund MF; Galbe M; Hahn-Hägerdal B; Zacchi G
    J Biotechnol; 2006 Dec; 126(4):488-98. PubMed ID: 16828190
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.
    Schell DJ; Dowe N; Chapeaux A; Nelson RS; Jennings EW
    Bioresour Technol; 2016 Apr; 205():153-8. PubMed ID: 26826954
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous bioconversion of cellulose and hemicellulose to ethanol.
    Chandrakant P; Bisaria VS
    Crit Rev Biotechnol; 1998; 18(4):295-331. PubMed ID: 9887507
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biological conversion of lignocellulosic biomass to ethanol.
    Lee J
    J Biotechnol; 1997 Jul; 56(1):1-24. PubMed ID: 9246788
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose.
    Kordowska-Wiater M; Targoński Z
    Acta Microbiol Pol; 2001; 50(3-4):291-9. PubMed ID: 11930997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Industrial yeast strain engineered to ferment ethanol from lignocellulosic biomass.
    Khramtsov N; McDade L; Amerik A; Yu E; Divatia K; Tikhonov A; Minto M; Kabongo-Mubalamate G; Markovic Z; Ruiz-Martinez M; Henck S
    Bioresour Technol; 2011 Sep; 102(17):8310-3. PubMed ID: 21683582
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set.
    Banerjee G; Car S; Scott-Craig JS; Borrusch MS; Aslam N; Walton JD
    Biotechnol Bioeng; 2010 Aug; 106(5):707-20. PubMed ID: 20564609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.