BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 22226197)

  • 1. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH.
    Moon J; Liu ZL
    Enzyme Microb Technol; 2012 Feb; 50(2):115-20. PubMed ID: 22226197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.
    Zhao X; Tang J; Wang X; Yang R; Zhang X; Gu Y; Li X; Ma M
    Yeast; 2015 May; 32(5):409-22. PubMed ID: 25656244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Liu ZL; Moon J
    Gene; 2009 Oct; 446(1):1-10. PubMed ID: 19577617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae.
    Almeida JR; Röder A; Modig T; Laadan B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):939-45. PubMed ID: 18330568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.
    Wang X; Ma M; Liu ZL; Xiang Q; Li X; Liu N; Zhang X
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6671-6682. PubMed ID: 27003269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance.
    Petersson A; Almeida JR; Modig T; Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF; Lidén G
    Yeast; 2006 Apr; 23(6):455-64. PubMed ID: 16652391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Ma M; Wang X; Zhang X; Zhao X
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8411-25. PubMed ID: 23912116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.
    Moon J; Liu ZL
    Yeast; 2015 Apr; 32(4):399-407. PubMed ID: 25656103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae.
    Laadan B; Almeida JR; Rådström P; Hahn-Hägerdal B; Gorwa-Grauslund M
    Yeast; 2008 Mar; 25(3):191-8. PubMed ID: 18302314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural.
    Jordan DB; Braker JD; Bowman MJ; Vermillion KE; Moon J; Liu ZL
    Biochim Biophys Acta; 2011 Dec; 1814(12):1686-94. PubMed ID: 21890004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.
    Jayakody LN; Horie K; Hayashi N; Kitagaki H
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Saccharomyces cerevisiae reductase YOL151W mutants suitable for chiral alcohol synthesis using an NADH cofactor regeneration system.
    Yoon SA; Jung J; Park S; Kim HK
    J Microbiol Biotechnol; 2013 Feb; 23(2):218-24. PubMed ID: 23412065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.
    Liu ZL; Ma M; Song M
    Mol Genet Genomics; 2009 Sep; 282(3):233-44. PubMed ID: 19517136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC; Bewley MC; Barber MJ
    Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae.
    Park SE; Koo HM; Park YK; Park SM; Park JC; Lee OK; Park YC; Seo JH
    Bioresour Technol; 2011 May; 102(10):6033-8. PubMed ID: 21421300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into the cofactor-assisted substrate recognition of yeast methylglyoxal/isovaleraldehyde reductase Gre2.
    Guo PC; Bao ZZ; Ma XX; Xia Q; Li WF
    Biochim Biophys Acta; 2014 Sep; 1844(9):1486-92. PubMed ID: 24879127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.