BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 22226197)

  • 21. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate.
    Modig T; Almeida JR; Gorwa-Grauslund MF; Lidén G
    Biotechnol Bioeng; 2008 Jun; 100(3):423-9. PubMed ID: 18438882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical probing of in vivo 5-hydroxymethyl furfural reduction in Saccharomyces cerevisiae.
    Kostesha NV; Almeida JR; Heiskanen AR; Gorwa-Grauslund MF; Hahn-Hägerdal B; Emnéus J
    Anal Chem; 2009 Dec; 81(24):9896-901. PubMed ID: 19925001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities.
    Rees-Milton KJ; Jia Z; Green NC; Bhatia M; El-Kabbani O; Flynn TG
    Arch Biochem Biophys; 1998 Jul; 355(2):137-44. PubMed ID: 9675019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural.
    Ishida Y; Nguyen TTM; Izawa S
    J Biotechnol; 2017 Jun; 252():65-72. PubMed ID: 28458045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors.
    Liu ZL
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):27-36. PubMed ID: 17028874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.
    Gorsich SW; Dien BS; Nichols NN; Slininger PJ; Liu ZL; Skory CD
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):339-49. PubMed ID: 16222531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lysine 219 participates in NADPH specificity in a flavin-containing monooxygenase from Saccharomyces cerevisiae.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Arch Biochem Biophys; 1999 Dec; 372(2):360-6. PubMed ID: 10600176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. YKL071W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of glycolaldehyde and furfural derived from lignocellulose.
    Wang H; Ouyang Y; Zhou C; Xiao D; Guo Y; Wu L; Li X; Gu Y; Xiang Q; Zhao K; Yu X; Zou L; Ma M
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8405-8418. PubMed ID: 29034432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example.
    Katzberg M; Skorupa-Parachin N; Gorwa-Grauslund MF; Bertau M
    Int J Mol Sci; 2010 Apr; 11(4):1735-58. PubMed ID: 20480039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism.
    Jayakody LN; Turner TL; Yun EJ; Kong II; Liu JJ; Jin YS
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):8121-8133. PubMed ID: 30027490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.
    Jo JH; Oh SY; Lee HS; Park YC; Seo JH
    Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL; Slininger PJ; Gorsich SW
    Appl Biochem Biotechnol; 2005; 121-124():451-60. PubMed ID: 15917621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 5-Hydroxymethylfurfural induces ADH7 and ARI1 expression in tolerant industrial Saccharomyces cerevisiae strain P6H9 during bioethanol production.
    Sehnem NT; Machado Ada S; Leite FC; Pita Wde B; de Morais MA; Ayub MA
    Bioresour Technol; 2013 Apr; 133():190-6. PubMed ID: 23422309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae.
    Liu ZL; Huang X; Zhou Q; Xu J
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5781-5796. PubMed ID: 31139900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1-propanol using Saccharomyces cerevisiae reductase with high enantioselectivity.
    Choi YH; Choi HJ; Kim D; Uhm KN; Kim HK
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):185-93. PubMed ID: 20111861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H).
    Cui D; Zhang L; Jiang S; Yao Z; Gao B; Lin J; Yuan YA; Wei D
    FEBS J; 2015 Jun; 282(12):2339-51. PubMed ID: 25817922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases.
    Heer D; Heine D; Sauer U
    Appl Environ Microbiol; 2009 Dec; 75(24):7631-8. PubMed ID: 19854918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.