These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 22226600)
21. TMEM16F Regulates Spinal Microglial Function in Neuropathic Pain States. Batti L; Sundukova M; Murana E; Pimpinella S; De Castro Reis F; Pagani F; Wang H; Pellegrino E; Perlas E; Di Angelantonio S; Ragozzino D; Heppenstall PA Cell Rep; 2016 Jun; 15(12):2608-15. PubMed ID: 27332874 [TBL] [Abstract][Full Text] [Related]
22. Ketamine depresses toll-like receptor 3 signaling in spinal microglia in a rat model of neuropathic pain. Mei XP; Zhou Y; Wang W; Tang J; Wang W; Zhang H; Xu LX; Li YQ Neurosignals; 2011; 19(1):44-53. PubMed ID: 21389680 [TBL] [Abstract][Full Text] [Related]
23. The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Inoue K Pharmacol Ther; 2006 Jan; 109(1-2):210-26. PubMed ID: 16169595 [TBL] [Abstract][Full Text] [Related]
24. Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Qu XX; Cai J; Li MJ; Chi YN; Liao FF; Liu FY; Wan Y; Han JS; Xing GG Exp Neurol; 2009 Feb; 215(2):298-307. PubMed ID: 19046970 [TBL] [Abstract][Full Text] [Related]
25. The role of mitogen activated protein kinase signaling in microglia and neurons in the initiation and maintenance of chronic pain. Crown ED Exp Neurol; 2012 Apr; 234(2):330-9. PubMed ID: 22062045 [TBL] [Abstract][Full Text] [Related]
26. Sex differences in peripheral not central immune responses to pain-inducing injury. Lopes DM; Malek N; Edye M; Jager SB; McMurray S; McMahon SB; Denk F Sci Rep; 2017 Nov; 7(1):16460. PubMed ID: 29184144 [TBL] [Abstract][Full Text] [Related]
27. Spinal glial activation contributes to pathological pain states. Cao H; Zhang YQ Neurosci Biobehav Rev; 2008 Jul; 32(5):972-83. PubMed ID: 18471878 [TBL] [Abstract][Full Text] [Related]
28. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Colburn RW; Rickman AJ; DeLeo JA Exp Neurol; 1999 Jun; 157(2):289-304. PubMed ID: 10364441 [TBL] [Abstract][Full Text] [Related]
29. Spinal microglia-neuron interactions in chronic pain. Ho IHT; Chan MTV; Wu WKK; Liu X J Leukoc Biol; 2020 Nov; 108(5):1575-1592. PubMed ID: 32573822 [TBL] [Abstract][Full Text] [Related]
30. Spinal cord histopathological alterations in a patient with longstanding complex regional pain syndrome. Del Valle L; Schwartzman RJ; Alexander G Brain Behav Immun; 2009 Jan; 23(1):85-91. PubMed ID: 18786633 [TBL] [Abstract][Full Text] [Related]
31. Chronic pain and microglia: the role of ATP. Inoue K; Tsuda M; Koizumi S Novartis Found Symp; 2004; 261():55-64; discussion 64-7, 149-54. PubMed ID: 15469044 [TBL] [Abstract][Full Text] [Related]
32. The neuropathic pain triad: neurons, immune cells and glia. Scholz J; Woolf CJ Nat Neurosci; 2007 Nov; 10(11):1361-8. PubMed ID: 17965656 [TBL] [Abstract][Full Text] [Related]
33. Regional topographical differences of canine microglial immunophenotype and function in the healthy spinal cord. Ensinger EM; Boekhoff TM; Carlson R; Beineke A; Rohn K; Tipold A; Stein VM J Neuroimmunol; 2010 Oct; 227(1-2):144-52. PubMed ID: 20728950 [TBL] [Abstract][Full Text] [Related]
34. 1-(2',4'-dichlorophenyl)-6-methyl-N-cyclohexylamine-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide, a novel CB2 agonist, alleviates neuropathic pain through functional microglial changes in mice. Luongo L; Palazzo E; Tambaro S; Giordano C; Gatta L; Scafuro MA; Rossi FS; Lazzari P; Pani L; de Novellis V; Malcangio M; Maione S Neurobiol Dis; 2010 Jan; 37(1):177-85. PubMed ID: 19804829 [TBL] [Abstract][Full Text] [Related]
35. Effect of tetramethylpyrazine on primary afferent transmission mediated by P2X3 receptor in neuropathic pain states. Gao Y; Xu C; Liang S; Zhang A; Mu S; Wang Y; Wan F Brain Res Bull; 2008 Sep; 77(1):27-32. PubMed ID: 18639742 [TBL] [Abstract][Full Text] [Related]
36. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Verge GM; Milligan ED; Maier SF; Watkins LR; Naeve GS; Foster AC Eur J Neurosci; 2004 Sep; 20(5):1150-60. PubMed ID: 15341587 [TBL] [Abstract][Full Text] [Related]
38. Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Echeverry S; Shi XQ; Zhang J Pain; 2008 Mar; 135(1-2):37-47. PubMed ID: 17560721 [TBL] [Abstract][Full Text] [Related]
39. Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat. Zhou LJ; Yang T; Wei X; Liu Y; Xin WJ; Chen Y; Pang RP; Zang Y; Li YY; Liu XG Brain Behav Immun; 2011 Feb; 25(2):322-34. PubMed ID: 20933591 [TBL] [Abstract][Full Text] [Related]
40. Activation of the spinal cord complement cascade might contribute to mechanical allodynia induced by three animal models of spinal sensitization. Twining CM; Sloane EM; Schoeniger DK; Milligan ED; Martin D; Marsh H; Maier SF; Watkins LR J Pain; 2005 Mar; 6(3):174-83. PubMed ID: 15772911 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]