These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22226722)

  • 1. Investigation on the conditions mitigating membrane fouling caused by TiO2 deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment.
    Damodar RA; You SJ; Chiou GW
    J Hazard Mater; 2012 Feb; 203-204():348-56. PubMed ID: 22226722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of azo dye-TiO2 interactions on the filtration performance in a hybrid photocatalysis/ultrafiltration process.
    Zhang J; Wang L; Zhang G; Wang Z; Xu L; Fan Z
    J Colloid Interface Sci; 2013 Jan; 389(1):273-83. PubMed ID: 23062964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performing a microfiltration integrated with photocatalysis using an Ag-TiO(2)/HAP/Al(2)O(3) composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties.
    Ma N; Zhang Y; Quan X; Fan X; Zhao H
    Water Res; 2010 Dec; 44(20):6104-14. PubMed ID: 20650505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane.
    Sun D; Meng TT; Loong TH; Hwa TJ
    Water Sci Technol; 2004; 49(1):103-10. PubMed ID: 14979544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane vis-LED photoreactor for simultaneous penicillin G degradation and TiO2 separation.
    Wang P; Lim TT
    Water Res; 2012 Apr; 46(6):1825-37. PubMed ID: 22244971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of color substances using photocatalytic oxidation for membrane filtration processes.
    Tay JH; Chen D; Sun DD
    Water Sci Technol; 2001; 43(10):319-25. PubMed ID: 11436797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes.
    Lin YL; Chiou JH; Lee CH
    J Hazard Mater; 2014 Jul; 277():102-9. PubMed ID: 24560524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and photocatalytic degradation of bisphenol A using TiO2 and its separation by submerged hollowfiber ultrafiltration membrane.
    Lee JW; Kwon TO; Thiruvenkatachari R; Moon IS
    J Environ Sci (China); 2006; 18(1):193-200. PubMed ID: 20050572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes.
    Damodar RA; You SJ; Chou HH
    J Hazard Mater; 2009 Dec; 172(2-3):1321-8. PubMed ID: 19729240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES-TiO2 membranes.
    Sotto A; Boromand A; Zhang R; Luis P; Arsuaga JM; Kim J; Van der Bruggen B
    J Colloid Interface Sci; 2011 Nov; 363(2):540-50. PubMed ID: 21875711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of suspended and fixed photocatalytic reactor systems.
    Geissen SU; Xi W; Weidemeyer A; Vogelpohl A; Bousselmi L; Ghrab A; Nnabi AE
    Water Sci Technol; 2001; 44(5):245-9. PubMed ID: 11695466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fouling mitigation by iron-based electroflocculation in microfiltration: Mechanisms and energy minimization.
    Ben Sasson M; Adin A
    Water Res; 2010 Jul; 44(13):3973-81. PubMed ID: 20570312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic removal of cyanide with illuminated TiO(2).
    Siboni MS; Samarghandi MR; Yang JK; Lee SM
    Water Sci Technol; 2011; 64(7):1383-7. PubMed ID: 22179633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of textile dyehouse wastewater by TiO2 photocatalysis.
    Pekakis PA; Xekoukoulotakis NP; Mantzavinos D
    Water Res; 2006 Mar; 40(6):1276-86. PubMed ID: 16510167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of an indigenous integrated slurry photocatalytic membrane reactor (PMR) on the removal of aqueous phenanthrene (PHE).
    Rani CN; Karthikeyan S
    Water Sci Technol; 2018 Jun; 77(11-12):2642-2656. PubMed ID: 29944129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fulvic acid degradation using nanoparticle TiO2 in a submerged membrane photocatalysis reactor.
    Fu JF; Ji M; An DN
    J Environ Sci (China); 2005; 17(6):942-5. PubMed ID: 16465883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment.
    Myung SW; Choi IH; Lee SH; Kim IC; Lee KH
    Water Sci Technol; 2005; 51(6-7):159-64. PubMed ID: 16003974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst.
    Fu J; Ji M; Wang Z; Jin L; An D
    J Hazard Mater; 2006 Apr; 131(1-3):238-42. PubMed ID: 16266780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide.
    Jain R; Shrivastava M
    J Hazard Mater; 2008 Mar; 152(1):216-20. PubMed ID: 17706865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.