BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22226895)

  • 1. The charge excitation in the Raman process as correlated from a classical theory for Raman optical activity: the case study of (+)-(R)-methyloxirane.
    Fang Y; Wu G; Wang P
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Mar; 88():216-9. PubMed ID: 22226895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analytical derivative procedure for the calculation of vibrational Raman optical activity spectra.
    Liégeois V; Ruud K; Champagne B
    J Chem Phys; 2007 Nov; 127(20):204105. PubMed ID: 18052417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The significance of the temporal bond polarizabilty relaxation of 2- and 3-aminopyridine by 514.5 nm excitation for the nonresonant Raman virtual states.
    Fang C; Wu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1588-93. PubMed ID: 18640071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The asymmetry of (-)α-pinene as revealed from its raman optical activity spectrum.
    Wang P; Fang Y; Wu G
    Chirality; 2013 Oct; 25(10):600-5. PubMed ID: 23846843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational Raman optical activity of 1-phenylethanol and 1-phenylethylamine: revisiting old friends.
    Kapitán J; Johannessen C; Bour P; Hecht L; Barron LD
    Chirality; 2009; 21 Suppl 1():E4-12. PubMed ID: 19544353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chirality transition in the epoxidation of (-)-alpha-pinene and successive hydrolysis studied by Raman optical activity and DFT.
    Qiu S; Li G; Liu P; Wang C; Feng Z; Li C
    Phys Chem Chem Phys; 2010 Mar; 12(12):3005-13. PubMed ID: 20449393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent effect on optical rotation: A case study of methyloxirane in water.
    Mukhopadhyay P; Zuber G; Goldsmith MR; Wipf P; Beratan DN
    Chemphyschem; 2006 Dec; 7(12):2483-6. PubMed ID: 17072929
    [No Abstract]   [Full Text] [Related]  

  • 8. Intra-molecular enantiomerism in R-(+)-Limonene as evidenced by the differential bond polarizabilities.
    Shen H; Wu G; Wang P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():838-43. PubMed ID: 24704601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amide I Raman optical activity of polypeptides: fragment approximation.
    Choi JH; Cho M
    J Chem Phys; 2009 Jan; 130(1):014503. PubMed ID: 19140618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate determination of protein secondary structure content from Raman and Raman optical activity spectra.
    Kinalwa MN; Blanch EW; Doig AJ
    Anal Chem; 2010 Aug; 82(15):6347-9. PubMed ID: 20669990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman optical activity and surface enhanced resonance Raman optical activity analysis of cytochrome c.
    Johannessen C; White PC; Abdali S
    J Phys Chem A; 2007 Aug; 111(32):7771-6. PubMed ID: 17637043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman intensity interpretation of pyridine liquid and its adsorption on the Ag electrode via bond polarizabilities.
    Fang C; Wu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):948-53. PubMed ID: 20851667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The charge shift in the excited virtual state of pyrimidine during the nonresonant Raman process at 632.8 nm: the bond polarizability study.
    Zhao Y; Wang H; Wu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr; 66(4-5):1175-9. PubMed ID: 17289427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A confidence level algorithm for the determination of absolute configuration using vibrational circular dichroism or Raman optical activity.
    Debie E; De Gussem E; Dukor RK; Herrebout W; Nafie LA; Bultinck P
    Chemphyschem; 2011 Jun; 12(8):1542-9. PubMed ID: 21542094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FT-IR and FT-Raman spectral investigation, computed IR intensity and Raman activity analysis and frequency estimation analysis on 4-chloro-2-bromoacetophenone using HF and DFT calculations.
    Ramalingam S; Anbusrinivasan P; Periandy S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):826-34. PubMed ID: 21216662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and vibrational optical activity of several peptides related to neurohypophyseal hormones: disulfide group conformation.
    Pazderková M; Bednárová L; Dlouhá H; Flegel M; Lebl M; Hlaváček J; Setnička V; Urbanová M; Hynie S; Klenerová V; Baumruk V; Maloň P
    Biopolymers; 2012 Nov; 97(11):923-32. PubMed ID: 22899367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can Raman optical activity separate axial from local chirality? A theoretical study of helical deca-alanine.
    Herrmann C; Ruud K; Reiher M
    Chemphyschem; 2006 Oct; 7(10):2189-96. PubMed ID: 16941557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), UV and NBO analysis of 2-chlorobenzonitrile by density functional method.
    Krishnan AR; Saleem H; Subashchandrabose S; Sundaraganesan N; Sebastain S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):582-9. PubMed ID: 21190895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional theory study on Herzberg-Teller contribution in Raman scattering from 4-aminothiophenol-metal complex and metal-4-aminothiophenol-metal junction.
    Liu S; Zhao X; Li Y; Zhao X; Chen M
    J Chem Phys; 2009 Jun; 130(23):234509. PubMed ID: 19548741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex.
    Birke RL; Znamenskiy V; Lombardi JR
    J Chem Phys; 2010 Jun; 132(21):214707. PubMed ID: 20528041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.