BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22226909)

  • 1. Functional characterization of the pleckstrin homology domain of a cellulose synthase from the oomycete Saprolegnia monoica.
    Fugelstad J; Brown C; Hukasova E; Sundqvist G; Lindqvist A; Bulone V
    Biochem Biophys Res Commun; 2012 Jan; 417(4):1248-53. PubMed ID: 22226909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational studies of the binding profile of phosphoinositide PtdIns (3,4,5) P₃ with the pleckstrin homology domain of an oomycete cellulose synthase.
    Kuang G; Bulone V; Tu Y
    Sci Rep; 2016 Feb; 6():20555. PubMed ID: 26857031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the cellulose synthase genes from the Oomycete Saprolegnia monoica and effect of cellulose synthesis inhibitors on gene expression and enzyme activity.
    Fugelstad J; Bouzenzana J; Djerbi S; Guerriero G; Ezcurra I; Teeri TT; Arvestad L; Bulone V
    Fungal Genet Biol; 2009 Oct; 46(10):759-67. PubMed ID: 19589393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleckstrin homology domains: not just for phosphoinositides.
    Lemmon MA
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):707-11. PubMed ID: 15493994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the first Oomycete annexin as a (1-->3)-beta-D-glucan synthase activator.
    Bouzenzana J; Pelosi L; Briolay A; Briolay J; Bulone V
    Mol Microbiol; 2006 Oct; 62(2):552-65. PubMed ID: 16978258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.
    Guerriero G; Avino M; Zhou Q; Fugelstad J; Clergeot PH; Bulone V
    PLoS Pathog; 2010 Aug; 6(8):e1001070. PubMed ID: 20865175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional characterization of the microtubule interacting and trafficking domains of two oomycete chitin synthases.
    Brown C; Szpryngiel S; Kuang G; Srivastava V; Ye W; McKee LS; Tu Y; Mäler L; Bulone V
    FEBS J; 2016 Aug; 283(16):3072-88. PubMed ID: 27363606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and phosphatidylinositol-(3,4)-bisphosphate binding of the C-terminal PH domain of human pleckstrin.
    Edlich C; Stier G; Simon B; Sattler M; Muhle-Goll C
    Structure; 2005 Feb; 13(2):277-86. PubMed ID: 15698571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphotyrosine protein of molecular mass 30 kDa binds specifically to the positively charged region of the pleckstrin N-terminal pleckstrin homology domain.
    Liu L; Makowske M
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):423-30. PubMed ID: 10455030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct phosphoinositide binding specificity of the GAP1 family proteins: characterization of the pleckstrin homology domains of MRASAL and KIAA0538.
    Minagawa T; Fukuda M; Mikoshiba K
    Biochem Biophys Res Commun; 2001 Oct; 288(1):87-90. PubMed ID: 11594756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and dynamics of the human pleckstrin DEP domain: distinct molecular features of a novel DEP domain subfamily.
    Civera C; Simon B; Stier G; Sattler M; Macias MJ
    Proteins; 2005 Feb; 58(2):354-66. PubMed ID: 15573383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR structure of the amino-terminal domain from the Tfb1 subunit of TFIIH and characterization of its phosphoinositide and VP16 binding sites.
    Di Lello P; Nguyen BD; Jones TN; Potempa K; Kobor MS; Legault P; Omichinski JG
    Biochemistry; 2005 May; 44(21):7678-86. PubMed ID: 15909982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the adsorption profiles of the Saprolegnia monoica chitin synthase MIT domain on POPA and POPC membranes by molecular dynamics simulation studies.
    Kuang G; Liang L; Brown C; Wang Q; Bulone V; Tu Y
    Phys Chem Chem Phys; 2016 Feb; 18(7):5281-90. PubMed ID: 26818595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities.
    Dowler S; Currie RA; Campbell DG; Deak M; Kular G; Downes CP; Alessi DR
    Biochem J; 2000 Oct; 351(Pt 1):19-31. PubMed ID: 11001876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane targeting by pleckstrin homology domains.
    Cozier GE; Carlton J; Bouyoucef D; Cullen PJ
    Curr Top Microbiol Immunol; 2004; 282():49-88. PubMed ID: 14594214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal-dependent membrane targeting by pleckstrin homology (PH) domains.
    Lemmon MA; Ferguson KM
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):1-18. PubMed ID: 10926821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate.
    Harlan JE; Hajduk PJ; Yoon HS; Fesik SW
    Nature; 1994 Sep; 371(6493):168-70. PubMed ID: 8072546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of the strict phospholipid binding specificity of the pleckstrin homology domain of human evectin-2.
    Okazaki S; Kato R; Uchida Y; Taguchi T; Arai H; Wakatsuki S
    Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):117-23. PubMed ID: 22281740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pleckstrin homology domains and phospholipid-induced cytoskeletal reorganization.
    Ma AD; Abrams CS
    Thromb Haemost; 1999 Aug; 82(2):399-406. PubMed ID: 10605730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The solution structure of the pleckstrin homology domain of mouse Son-of-sevenless 1 (mSos1).
    Koshiba S; Kigawa T; Kim JH; Shirouzu M; Bowtell D; Yokoyama S
    J Mol Biol; 1997 Jun; 269(4):579-91. PubMed ID: 9217262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.