These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient. Chae JI; Kim DW; Lee N; Jeon YJ; Jeon I; Kwon J; Kim J; Soh Y; Lee DS; Seo KS; Choi NJ; Park BC; Kang SH; Ryu J; Oh SH; Shin DA; Lee DR; Do JT; Park IH; Daley GQ; Song J Biochem J; 2012 Sep; 446(3):359-71. PubMed ID: 22694310 [TBL] [Abstract][Full Text] [Related]
7. Expression of the Huntington's disease transgene in neural stem cell cultures from R6/2 transgenic mice. Chu-LaGraff Q; Kang X; Messer A Brain Res Bull; 2001 Oct-Nov 1; 56(3-4):307-12. PubMed ID: 11719265 [TBL] [Abstract][Full Text] [Related]
8. Centrosome disorganization in fibroblast cultures derived from R6/2 Huntington's disease (HD) transgenic mice and HD patients. Sathasivam K; Woodman B; Mahal A; Bertaux F; Wanker EE; Shima DT; Bates GP Hum Mol Genet; 2001 Oct; 10(21):2425-35. PubMed ID: 11689489 [TBL] [Abstract][Full Text] [Related]
9. Expanded CAG repeats in the murine Huntington's disease gene increases neuronal differentiation of embryonic and neural stem cells. Lorincz MT; Zawistowski VA Mol Cell Neurosci; 2009 Jan; 40(1):1-13. PubMed ID: 18625318 [TBL] [Abstract][Full Text] [Related]
10. FOXOs modulate proteasome activity in human-induced pluripotent stem cells of Huntington's disease and their derived neural cells. Liu Y; Qiao F; Leiferman PC; Ross A; Schlenker EH; Wang H Hum Mol Genet; 2017 Nov; 26(22):4416-4428. PubMed ID: 28973411 [TBL] [Abstract][Full Text] [Related]
11. Impaired basal and running-induced hippocampal neurogenesis coincides with reduced Akt signaling in adult R6/1 HD mice. Ransome MI; Hannan AJ Mol Cell Neurosci; 2013 May; 54():93-107. PubMed ID: 23384443 [TBL] [Abstract][Full Text] [Related]
12. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease. McBride JL; Ramaswamy S; Gasmi M; Bartus RT; Herzog CD; Brandon EP; Zhou L; Pitzer MR; Berry-Kravis EM; Kordower JH Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9345-50. PubMed ID: 16751280 [TBL] [Abstract][Full Text] [Related]
14. Weight loss in Huntington disease increases with higher CAG repeat number. Aziz NA; van der Burg JM; Landwehrmeyer GB; Brundin P; Stijnen T; ; Roos RA Neurology; 2008 Nov; 71(19):1506-13. PubMed ID: 18981372 [TBL] [Abstract][Full Text] [Related]
15. Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. Szlachcic WJ; Switonski PM; Krzyzosiak WJ; Figlerowicz M; Figiel M Dis Model Mech; 2015 Sep; 8(9):1047-57. PubMed ID: 26092128 [TBL] [Abstract][Full Text] [Related]
17. Stem cell therapy and cellular engineering for treatment of neuronal dysfunction in Huntington's disease. Choi KA; Hwang I; Park HS; Oh SI; Kang S; Hong S Biotechnol J; 2014 Jul; 9(7):882-94. PubMed ID: 24827816 [TBL] [Abstract][Full Text] [Related]
18. Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of Huntington's disease. Kohl Z; Kandasamy M; Winner B; Aigner R; Gross C; Couillard-Despres S; Bogdahn U; Aigner L; Winkler J Brain Res; 2007 Jun; 1155():24-33. PubMed ID: 17512917 [TBL] [Abstract][Full Text] [Related]
19. IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Lee H; Noh JY; Oh Y; Kim Y; Chang JW; Chung CW; Lee ST; Kim M; Ryu H; Jung YK Hum Mol Genet; 2012 Jan; 21(1):101-14. PubMed ID: 21954231 [TBL] [Abstract][Full Text] [Related]
20. Progressive CAG expansion in the brain of a novel R6/1-89Q mouse model of Huntington's disease with delayed phenotypic onset. Vatsavayai SC; Dallérac GM; Milnerwood AJ; Cummings DM; Rezaie P; Murphy KP; Hirst MC Brain Res Bull; 2007 Apr; 72(2-3):98-102. PubMed ID: 17352932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]