These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 22227050)
1. Task-driven ICA feature generation for accurate and interpretable prediction using fMRI. Duff EP; Trachtenberg AJ; Mackay CE; Howard MA; Wilson F; Smith SM; Woolrich MW Neuroimage; 2012 Mar; 60(1):189-203. PubMed ID: 22227050 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of multi-echo ICA denoising for task based fMRI studies: Block designs, rapid event-related designs, and cardiac-gated fMRI. Gonzalez-Castillo J; Panwar P; Buchanan LC; Caballero-Gaudes C; Handwerker DA; Jangraw DC; Zachariou V; Inati S; Roopchansingh V; Derbyshire JA; Bandettini PA Neuroimage; 2016 Nov; 141():452-468. PubMed ID: 27475290 [TBL] [Abstract][Full Text] [Related]
3. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422 [TBL] [Abstract][Full Text] [Related]
4. Analysis of fMRI data by blind separation into independent spatial components. McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671 [TBL] [Abstract][Full Text] [Related]
5. Separating 4D multi-task fMRI data of multiple subjects by independent component analysis with projection. Long Z; Li R; Wen X; Jin Z; Chen K; Yao L Magn Reson Imaging; 2013 Jan; 31(1):60-74. PubMed ID: 22898701 [TBL] [Abstract][Full Text] [Related]
6. A group model for stable multi-subject ICA on fMRI datasets. Varoquaux G; Sadaghiani S; Pinel P; Kleinschmidt A; Poline JB; Thirion B Neuroimage; 2010 May; 51(1):288-99. PubMed ID: 20153834 [TBL] [Abstract][Full Text] [Related]
7. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Griffanti L; Salimi-Khorshidi G; Beckmann CF; Auerbach EJ; Douaud G; Sexton CE; Zsoldos E; Ebmeier KP; Filippini N; Mackay CE; Moeller S; Xu J; Yacoub E; Baselli G; Ugurbil K; Miller KL; Smith SM Neuroimage; 2014 Jul; 95():232-47. PubMed ID: 24657355 [TBL] [Abstract][Full Text] [Related]
8. Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior. Kong R; Yang Q; Gordon E; Xue A; Yan X; Orban C; Zuo XN; Spreng N; Ge T; Holmes A; Eickhoff S; Yeo BTT Cereb Cortex; 2021 Aug; 31(10):4477-4500. PubMed ID: 33942058 [TBL] [Abstract][Full Text] [Related]
9. A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies. Guo Y; Tang L Biometrics; 2013 Dec; 69(4):970-81. PubMed ID: 24033125 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear ICA of fMRI reveals primitive temporal structures linked to rest, task, and behavioral traits. Morioka H; Calhoun V; Hyvärinen A Neuroimage; 2020 Sep; 218():116989. PubMed ID: 32485305 [TBL] [Abstract][Full Text] [Related]
11. Semi-blind ICA of fMRI: A method for utilizing hypothesis-derived time courses in a spatial ICA analysis. Calhoun VD; Adali T; Stevens MC; Kiehl KA; Pekar JJ Neuroimage; 2005 Apr; 25(2):527-38. PubMed ID: 15784432 [TBL] [Abstract][Full Text] [Related]
12. SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis. Wang N; Zeng W; Chen L J Neurosci Methods; 2013 May; 216(1):49-61. PubMed ID: 23563324 [TBL] [Abstract][Full Text] [Related]
13. Contributive sources analysis: a measure of neural networks' contribution to brain activations. Beldzik E; Domagalik A; Daselaar S; Fafrowicz M; Froncisz W; Oginska H; Marek T Neuroimage; 2013 Aug; 76():304-12. PubMed ID: 23523811 [TBL] [Abstract][Full Text] [Related]
14. An efficient functional magnetic resonance imaging data reduction strategy using neighborhood preserving embedding algorithm. Zhao W; Li H; Hao Y; Hu G; Zhang Y; Frederick BB; Cong F Hum Brain Mapp; 2022 Apr; 43(5):1561-1576. PubMed ID: 34890077 [TBL] [Abstract][Full Text] [Related]
15. Spatial parcellations, spectral filtering, and connectivity measures in fMRI: Optimizing for discrimination. Sala-Llonch R; Smith SM; Woolrich M; Duff EP Hum Brain Mapp; 2019 Feb; 40(2):407-419. PubMed ID: 30259597 [TBL] [Abstract][Full Text] [Related]
16. Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI. Esposito F; Aragri A; Pesaresi I; Cirillo S; Tedeschi G; Marciano E; Goebel R; Di Salle F Magn Reson Imaging; 2008 Sep; 26(7):905-13. PubMed ID: 18486388 [TBL] [Abstract][Full Text] [Related]
17. An analytical workflow for seed-based correlation and independent component analysis in interventional resting-state fMRI studies. Seewoo BJ; Joos AC; Feindel KW Neurosci Res; 2021 Apr; 165():26-37. PubMed ID: 32464181 [TBL] [Abstract][Full Text] [Related]
18. A combined SPM-ICA approach to fMRI. Penney TJ; Koles ZJ Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():723-6. PubMed ID: 17946854 [TBL] [Abstract][Full Text] [Related]
19. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data. James GA; Hazaroglu O; Bush KA Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655 [TBL] [Abstract][Full Text] [Related]
20. A semi-blind online dictionary learning approach for fMRI data. Long Z; Liu L; Gao Z; Chen M; Yao L J Neurosci Methods; 2019 Jul; 323():1-12. PubMed ID: 31085215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]