These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22227197)

  • 1. The effect of salt on oligocation-induced chromatin condensation.
    Korolev N; Zhao Y; Allahverdi A; Eom KD; Tam JP; Nordenskiöld L
    Biochem Biophys Res Commun; 2012 Feb; 418(2):205-10. PubMed ID: 22227197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation.
    Korolev N; Berezhnoy NV; Eom KD; Tam JP; Nordenskiöld L
    Nucleic Acids Res; 2009 Nov; 37(21):7137-50. PubMed ID: 19773427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation.
    Korolev N; Berezhnoy NV; Eom KD; Tam JP; Nordenskiöld L
    Nucleic Acids Res; 2012 Mar; 40(6):2808-21. PubMed ID: 22563605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyelectrolyte counterion condensation theory explains differential scanning calorimetry studies of salt-induced condensation of chicken erythrocyte chromatin.
    Labarbe R; Flock S; Maus C; Houssier C
    Biochemistry; 1996 Mar; 35(10):3319-27. PubMed ID: 8605169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer modeling reveals that modifications of the histone tail charges define salt-dependent interaction of the nucleosome core particles.
    Yang Y; Lyubartsev AP; Korolev N; Nordenskiöld L
    Biophys J; 2009 Mar; 96(6):2082-94. PubMed ID: 19289035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1.
    Khadake JR; Rao MR
    Biochemistry; 1997 Feb; 36(5):1041-51. PubMed ID: 9033394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt effects on polyelectrolyte-ligand binding: comparison of Poisson-Boltzmann, and limiting law/counterion binding models.
    Sharp KA; Friedman RA; Misra V; Hecht J; Honig B
    Biopolymers; 1995 Aug; 36(2):245-62. PubMed ID: 7492748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation-induced polyelectrolyte-polyelectrolyte attraction in solutions of DNA and nucleosome core particles.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    Adv Colloid Interface Sci; 2010 Jul; 158(1-2):32-47. PubMed ID: 19758583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding.
    Carruthers LM; Bednar J; Woodcock CL; Hansen JC
    Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin compaction under mixed salt conditions: opposite effects of sodium and potassium ions on nucleosome array folding.
    Allahverdi A; Chen Q; Korolev N; Nordenskiöld L
    Sci Rep; 2015 Feb; 5():8512. PubMed ID: 25688036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA condensation by cobalt hexaammine (III) in alcohol-water mixtures: dielectric constant and other solvent effects.
    Arscott PG; Ma C; Wenner JR; Bloomfield VA
    Biopolymers; 1995 Sep; 36(3):345-64. PubMed ID: 7669919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid trypsinized nucleosomal arrays: identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction.
    Tse C; Hansen JC
    Biochemistry; 1997 Sep; 36(38):11381-8. PubMed ID: 9298957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing.
    Blank TA; Becker PB
    J Mol Biol; 1996 Jul; 260(1):1-8. PubMed ID: 8676389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions.
    Liu Y; Lu C; Yang Y; Fan Y; Yang R; Liu CF; Korolev N; Nordenskiöld L
    J Mol Biol; 2011 Dec; 414(5):749-64. PubMed ID: 22051513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approach to the limit of counterion condensation.
    Fenley MO; Manning GS; Olson WK
    Biopolymers; 1990; 30(13-14):1191-203. PubMed ID: 2085657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation.
    Sun J; Zhang Q; Schlick T
    Proc Natl Acad Sci U S A; 2005 Jun; 102(23):8180-5. PubMed ID: 15919827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray structure of a tetranucleosome and its implications for the chromatin fibre.
    Schalch T; Duda S; Sargent DF; Richmond TJ
    Nature; 2005 Jul; 436(7047):138-41. PubMed ID: 16001076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of interactions between nucleosome arrays mediated by specific core histone tail domains.
    Kan PY; Hayes JJ
    Methods; 2007 Mar; 41(3):278-85. PubMed ID: 17309837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural dynamics of nucleosome core particle: comparison with nucleosomes containing histone variants.
    Ramaswamy A; Bahar I; Ioshikhes I
    Proteins; 2005 Feb; 58(3):683-96. PubMed ID: 15624215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between cationic lipid bilayers and model chromatin.
    Lundberg D; Berezhnoy NV; Lu C; Korolev N; Su CJ; Alfredsson V; Miguel Mda G; Lindman B; Nordenskiöld L
    Langmuir; 2010 Aug; 26(15):12488-92. PubMed ID: 20593781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.