BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 22227199)

  • 1. Local sweating on the forehead, but not forearm, is influenced by aerobic fitness independently of heat balance requirements during exercise.
    Cramer MN; Bain AR; Jay O
    Exp Physiol; 2012 May; 97(5):572-82. PubMed ID: 22227199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sweating is greater in NCAA football linemen independently of heat production.
    Deren TM; Coris EE; Bain AR; Walz SM; Jay O
    Med Sci Sports Exerc; 2012 Feb; 44(2):244-52. PubMed ID: 21796051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A retrospective analysis to determine if exercise training-induced thermoregulatory adaptations are mediated by increased fitness or heat acclimation.
    Ravanelli N; Gagnon D; Imbeault P; Jay O
    Exp Physiol; 2021 Jan; 106(1):282-289. PubMed ID: 32118324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of thermoregulatory responses to exercise in dry heat among prepubertal boys, young adults and older males.
    Inbar O; Morris N; Epstein Y; Gass G
    Exp Physiol; 2004 Nov; 89(6):691-700. PubMed ID: 15328309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Describing individual variation in local sweating during exercise in a temperate environment.
    Bain AR; Deren TM; Jay O
    Eur J Appl Physiol; 2011 Aug; 111(8):1599-607. PubMed ID: 21190033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional differences in the effect of exercise intensity on thermoregulatory sweating and cutaneous vasodilation.
    Kondo N; Takano S; Aoki K; Shibasaki M; Tominaga H; Inoue Y
    Acta Physiol Scand; 1998 Sep; 164(1):71-8. PubMed ID: 9777027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoregulatory responses to exercise at a fixed rate of heat production are not altered by acute hypoxia.
    Coombs GB; Cramer MN; Ravanelli N; Imbeault P; Jay O
    J Appl Physiol (1985); 2017 May; 122(5):1198-1207. PubMed ID: 28302708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diminished nitric oxide-dependent sweating in older males during intermittent exercise in the heat.
    Stapleton JM; Fujii N; Carter M; Kenny GP
    Exp Physiol; 2014 Jun; 99(6):921-32. PubMed ID: 24706193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex differences in thermoeffector responses during exercise at fixed requirements for heat loss.
    Gagnon D; Kenny GP
    J Appl Physiol (1985); 2012 Sep; 113(5):746-57. PubMed ID: 22797311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state sweating during exercise is determined by the evaporative requirement for heat balance independently of absolute core and skin temperatures.
    Ravanelli N; Imbeault P; Jay O
    J Physiol; 2020 Jul; 598(13):2607-2619. PubMed ID: 32271468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoregulatory responses of prepubertal boys and young men during moderate exercise.
    Shibasaki M; Inoue Y; Kondo N; Iwata A
    Eur J Appl Physiol Occup Physiol; 1997; 75(3):212-8. PubMed ID: 9088839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairments in local heat loss in type 1 diabetes during exercise in the heat.
    Carter MR; McGinn R; Barrera-Ramirez J; Sigal RJ; Kenny GP
    Med Sci Sports Exerc; 2014 Dec; 46(12):2224-33. PubMed ID: 24784146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-body heat loss during exercise in the heat is not impaired in type 1 diabetes.
    Stapleton JM; Yardley JE; Boulay P; Sigal RJ; Kenny GP
    Med Sci Sports Exerc; 2013 Sep; 45(9):1656-64. PubMed ID: 23475170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of aerobic fitness on hypohydration-induced physiological strain and exercise impairment.
    Merry TL; Ainslie PN; Cotter JD
    Acta Physiol (Oxf); 2010 Feb; 198(2):179-90. PubMed ID: 19807723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explained variance in the thermoregulatory responses to exercise: the independent roles of biophysical and fitness/fatness-related factors.
    Cramer MN; Jay O
    J Appl Physiol (1985); 2015 Nov; 119(9):982-9. PubMed ID: 26316511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting the correct exercise intensity for unbiased comparisons of thermoregulatory responses between groups of different mass and surface area.
    Cramer MN; Jay O
    J Appl Physiol (1985); 2014 May; 116(9):1123-32. PubMed ID: 24505102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex differences in the effects of physical training on sweat gland responses during a graded exercise.
    Ichinose-Kuwahara T; Inoue Y; Iseki Y; Hara S; Ogura Y; Kondo N
    Exp Physiol; 2010 Oct; 95(10):1026-32. PubMed ID: 20696786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disappearance of seasonal variation of sweating responses in exercising man: effect of pre-heating in cold season.
    Torii M; Nakayama H
    J Hum Ergol (Tokyo); 1993 Jun; 22(1):11-20. PubMed ID: 8064147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise thermoregulation in men after 1 and 24-hours of 6 degrees head-down tilt.
    Ertl AC; Dearborn AS; Weidhofer AR; Bernauer EM; Greenleaf JE
    Aviat Space Environ Med; 2000 Feb; 71(2):150-5. PubMed ID: 10685589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise tolerance in a hot and humid climate in heat-acclimatized girls and women.
    Rivera-Brown AM; Rowland TW; Ramírez-Marrero FA; Santacana G; Vann A
    Int J Sports Med; 2006 Dec; 27(12):943-50. PubMed ID: 16739090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.