These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22227227)

  • 1. The role of mobile small RNA species during root growth and development.
    Furuta K; Lichtenberger R; Helariutta Y
    Curr Opin Cell Biol; 2012 Apr; 24(2):211-6. PubMed ID: 22227227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular biology. Small RNA makes its move.
    Martienssen R
    Science; 2010 May; 328(5980):834-5. PubMed ID: 20466910
    [No Abstract]   [Full Text] [Related]  

  • 3. Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root.
    Miyashima S; Koi S; Hashimoto T; Nakajima K
    Development; 2011 Jun; 138(11):2303-13. PubMed ID: 21558378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells.
    Molnar A; Melnyk CW; Bassett A; Hardcastle TJ; Dunn R; Baulcombe DC
    Science; 2010 May; 328(5980):872-5. PubMed ID: 20413459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate.
    Carlsbecker A; Lee JY; Roberts CJ; Dettmer J; Lehesranta S; Zhou J; Lindgren O; Moreno-Risueno MA; Vatén A; Thitamadee S; Campilho A; Sebastian J; Bowman JL; Helariutta Y; Benfey PN
    Nature; 2010 May; 465(7296):316-21. PubMed ID: 20410882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive expression analysis of the Arabidopsis MICRORNA165/6 gene family during embryogenesis reveals a conserved role in meristem specification and a non-cell-autonomous function.
    Miyashima S; Honda M; Hashimoto K; Tatematsu K; Hashimoto T; Sato-Nara K; Okada K; Nakajima K
    Plant Cell Physiol; 2013 Mar; 54(3):375-84. PubMed ID: 23292599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Callose biosynthesis regulates symplastic trafficking during root development.
    Vatén A; Dettmer J; Wu S; Stierhof YD; Miyashima S; Yadav SR; Roberts CJ; Campilho A; Bulone V; Lichtenberger R; Lehesranta S; Mähönen AP; Kim JY; Jokitalo E; Sauer N; Scheres B; Nakajima K; Carlsbecker A; Gallagher KL; Helariutta Y
    Dev Cell; 2011 Dec; 21(6):1144-55. PubMed ID: 22172675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental biology: Roots respond to an inner calling.
    Scheres B
    Nature; 2010 May; 465(7296):299-300. PubMed ID: 20485422
    [No Abstract]   [Full Text] [Related]  

  • 9. Transcription factors on the move.
    Wu S; Gallagher KL
    Curr Opin Plant Biol; 2012 Dec; 15(6):645-51. PubMed ID: 23031575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165.
    Ramachandran P; Wang G; Augstein F; de Vries J; Carlsbecker A
    Development; 2018 Feb; 145(3):. PubMed ID: 29361572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing.
    Hsieh LC; Lin SI; Shih AC; Chen JW; Lin WY; Tseng CY; Li WH; Chiou TJ
    Plant Physiol; 2009 Dec; 151(4):2120-32. PubMed ID: 19854858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCARECROW-LIKE23 and SCARECROW jointly specify endodermal cell fate but distinctly control SHORT-ROOT movement.
    Long Y; Goedhart J; Schneijderberg M; Terpstra I; Shimotohno A; Bouchet BP; Akhmanova A; Gadella TW; Heidstra R; Scheres B; Blilou I
    Plant J; 2015 Nov; 84(4):773-84. PubMed ID: 26415082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local and systemic regulation of sulfur homeostasis in roots of Arabidopsis thaliana.
    Hubberten HM; Drozd A; Tran BV; Hesse H; Hoefgen R
    Plant J; 2012 Nov; 72(4):625-35. PubMed ID: 22775482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intercellular communication during plant development.
    Van Norman JM; Breakfield NW; Benfey PN
    Plant Cell; 2011 Mar; 23(3):855-64. PubMed ID: 21386031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary root growth in Arabidopsis thaliana is inhibited by the miR159 mediated repression of MYB33, MYB65 and MYB101.
    Xue T; Liu Z; Dai X; Xiang F
    Plant Sci; 2017 Sep; 262():182-189. PubMed ID: 28716415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symplastic intercellular connectivity regulates lateral root patterning.
    Benitez-Alfonso Y; Faulkner C; Pendle A; Miyashima S; Helariutta Y; Maule A
    Dev Cell; 2013 Jul; 26(2):136-47. PubMed ID: 23850190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development.
    Ham BK; Li G; Kang BH; Zeng F; Lucas WJ
    Plant Cell; 2012 Sep; 24(9):3630-48. PubMed ID: 22960910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "And yet it moves": cell-to-cell and long-distance signaling by plant microRNAs.
    Marín-González E; Suárez-López P
    Plant Sci; 2012 Nov; 196():18-30. PubMed ID: 23017896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of small RNAs in vegetative shoot development.
    Fouracre JP; Poethig RS
    Curr Opin Plant Biol; 2016 Feb; 29():64-72. PubMed ID: 26745378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts.
    Li S; Wang X; Xu W; Liu T; Cai C; Chen L; Clark CB; Ma J
    Nat Plants; 2021 Jan; 7(1):50-59. PubMed ID: 33452489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.