These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22227266)

  • 21. Characterisation of microemulsions containing orange oil with water and propylene glycol as hydrophilic components.
    Yotsawimonwat S; Okonoki S; Krauel K; Sirithunyalug J; Sirithunyalug B; Rades T
    Pharmazie; 2006 Nov; 61(11):920-6. PubMed ID: 17152984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. X-ray diffraction and calorimetric study of N-lignoceryl sphingomyelin membranes.
    Maulik PR; Shipley GG
    Biophys J; 1995 Nov; 69(5):1909-16. PubMed ID: 8580334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formulation of hydrophilic non-aqueous gel: drug stability in different solvents and rheological behavior of gel matrices.
    Chow KT; Chan LW; Heng PW
    Pharm Res; 2008 Jan; 25(1):207-17. PubMed ID: 17909742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rheological behaviors and miscibility of mixture solution of polyaniline and cellulose dissolved in an aqueous system.
    Shi X; Lu A; Cai J; Zhang L; Zhang H; Li J; Wang X
    Biomacromolecules; 2012 Aug; 13(8):2370-8. PubMed ID: 22715951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water distribution studies within cellulose ethers using differential scanning calorimetry. 2. Effect of polymer substitution type and drug addition.
    McCrystal CB; Ford JL; Rajabi-Siahboomi AR
    J Pharm Sci; 1999 Aug; 88(8):797-801. PubMed ID: 10430545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extraordinary reinforcement effect of three-dimensionally nanoporous cellulose gels in poly(ε-caprolactone) bionanocomposites.
    Li K; Song J; Xu M; Kuga S; Zhang L; Cai J
    ACS Appl Mater Interfaces; 2014 May; 6(10):7204-13. PubMed ID: 24779576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rheological characterization of photochemical changes of ethyl(hydroxyethyl)cellulose dissolved in water in the presence of an ionic surfactant and a photosensitizer.
    Bu H; Kjøniksen AL; Nyström B
    Biomacromolecules; 2004; 5(2):610-7. PubMed ID: 15003028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of diclofenac and glycol intercalation on structural assembly of phospholipid lamellar vesicles.
    Castangia I; Manca ML; Matricardi P; Sinico C; Lampis S; Fernàndez-Busquets X; Fadda AM; Manconi M
    Int J Pharm; 2013 Nov; 456(1):1-9. PubMed ID: 23994760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Evaluations of Menthol and Propylene Glycol on the Transdermal Delivery System of Dual Drug-Loaded Lyotropic Liquid Crystalline Gels.
    Tian C; Liu L; Xia M; Chu XQ
    AAPS PharmSciTech; 2020 Aug; 21(6):224. PubMed ID: 32749554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water distribution studies within cellulose ethers using differential scanning calorimetry. 1. Effect of polymer molecular weight and drug addition.
    McCrystal CB; Ford JL; Rajabi-Siahboomi AR
    J Pharm Sci; 1999 Aug; 88(8):792-6. PubMed ID: 10430544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of sugars and polyols on water in agarose gels.
    Nishinari K; Watase M; Williams PA; Phillips GO
    Adv Exp Med Biol; 1991; 302():235-49. PubMed ID: 1746332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of microcapsules with the evaluation of physicochemical properties and molecular interaction.
    Kim KH; Cho SA; Lim JY; Lim DG; Moon C; Jeong SH
    Arch Pharm Res; 2014 Dec; 37(12):1570-7. PubMed ID: 24338504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions.
    Silva SM; Pinto FV; Antunes FE; Miguel MG; Sousa JJ; Pais AA
    J Colloid Interface Sci; 2008 Nov; 327(2):333-40. PubMed ID: 18804777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gel properties and formation mechanism of soy protein isolate gels improved by wheat bran cellulose.
    Xiao Y; Li J; Liu Y; Peng F; Wang X; Wang C; Li M; Xu H
    Food Chem; 2020 Sep; 324():126876. PubMed ID: 32361092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels.
    Pääkkö M; Ankerfors M; Kosonen H; Nykänen A; Ahola S; Osterberg M; Ruokolainen J; Laine J; Larsson PT; Ikkala O; Lindström T
    Biomacromolecules; 2007 Jun; 8(6):1934-41. PubMed ID: 17474776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of supramolecular gels based on β-cyclodextrin and polyethyleneglycol and their potential use for topical drug delivery.
    Klaewklod A; Tantishaiyakul V; Hirun N; Sangfai T; Li L
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():242-50. PubMed ID: 25746267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-association of novel mixed 3-mono-O-alkyl cellulose: Effect of the hydrophobic moieties ratio.
    Sullo A; Wang Y; Koschella A; Heinze T; Foster TJ
    Carbohydr Polym; 2013 Apr; 93(2):574-81. PubMed ID: 23499098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of surfactants on ethylcellulose oleogel structure and mechanical properties.
    Davidovich-Pinhas M; Barbut S; Marangoni AG
    Carbohydr Polym; 2015; 127():355-62. PubMed ID: 25965494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.