These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22227362)

  • 1. Predicting the chromatographic retention of polymers: application of the polymer model to poly(styrene/ethylacrylate)copolymers.
    Bashir MA; Radke W
    J Chromatogr A; 2012 Feb; 1225():107-12. PubMed ID: 22227362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The retention behavior of diblock copolymers in gradient chromatography; Similarities of diblock copolymers and homopolymers.
    Radke W
    J Chromatogr A; 2019 May; 1593():17-23. PubMed ID: 30683527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of synthetic copolymers by interaction polymer chromatography: Separation by microstructure.
    Brun Y; Foster P
    J Sep Sci; 2010 Nov; 33(22):3501-10. PubMed ID: 20949502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isocratic and gradient elution chromatography: a comparison in terms of speed, retention reproducibility and quantitation.
    Schellinger AP; Carr PW
    J Chromatogr A; 2006 Mar; 1109(2):253-66. PubMed ID: 16460742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interconversion of gradient and isocratic retention data in reversed-phase liquid chromatography: effect of the uptake of eluent modifier on the retention of analytes.
    Wang M; Mallette J; Parcher JF
    J Chromatogr A; 2009 Dec; 1216(49):8630-5. PubMed ID: 19879590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size exclusion chromatography-gradients, an alternative approach to polymer gradient chromatography: 2. Separation of poly(meth)acrylates using a size exclusion chromatography-solvent/non-solvent gradient.
    Schollenberger M; Radke W
    J Chromatogr A; 2011 Oct; 1218(43):7828-31. PubMed ID: 21939977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of void volume, mobile phase volume and accessible volume determined from retention data for oligomers in reversed-phase liquid chromatographic systems.
    Wang M; Mallette J; Parcher JF
    J Chromatogr A; 2011 May; 1218(20):2995-3001. PubMed ID: 21481886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional liquid chromatography of polystyrene-polyethylene oxide block copolymers.
    Malik MI; Harding GW; Grabowsky ME; Pasch H
    J Chromatogr A; 2012 Jun; 1244():77-87. PubMed ID: 22621890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an ion chromatographic gradient retention model from isocratic elution experiments.
    Bolanca T; Cerjan-Stefanović S; Lusa M; Rogosić M; Ukić S
    J Chromatogr A; 2006 Jul; 1121(2):228-35. PubMed ID: 16698028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the reversed-phase liquid chromatographic model to describe the retention behaviour of polydisperse macromolecules in gradient and isocratic liquid chromatography.
    Fitzpatrick F; Edam R; Schoenmakers P
    J Chromatogr A; 2003 Feb; 988(1):53-67. PubMed ID: 12647821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractionation of functional polystyrenes, poly(ethylene oxide)s and poly(styrene)-b-poly(ethylene oxide) by liquid chromatography at the exclusion-adsorption transition point.
    Baran K; Laugier S; Cramail H
    J Chromatogr B Biomed Sci Appl; 2001 Mar; 753(1):139-49. PubMed ID: 11302439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of retention models for polymers 1. Poly(ethylene glycol)s.
    Bashir MA; Radke W
    J Chromatogr A; 2006 Oct; 1131(1-2):130-41. PubMed ID: 16965782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the chromatographic retention of polymers: poly(methyl methacrylate)s and polyacryate blends.
    Bashir MA; Radke W
    J Chromatogr A; 2007 Sep; 1163(1-2):86-95. PubMed ID: 17586517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradient separation of polymers at critical point of adsorption.
    Brun Y; Alden P
    J Chromatogr A; 2002 Aug; 966(1-2):25-40. PubMed ID: 12214702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins.
    Jandera P; Kučerová Z; Urban J
    J Chromatogr A; 2011 Dec; 1218(49):8874-89. PubMed ID: 21742334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid chromatography of polymers under limiting conditions of desorption II. Tandem injection and quantitative molar mass determination.
    Snauko M; Berek D
    J Chromatogr A; 2005 Nov; 1094(1-2):42-8. PubMed ID: 16257287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the behaviour of polydisperse polymers in liquid chromatography under isocratic and gradient conditions.
    Schoenmakers P; Fitzpatrick F; Grothey R
    J Chromatogr A; 2002 Aug; 965(1-2):93-107. PubMed ID: 12236541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention models for isocratic and gradient elution in reversed-phase liquid chromatography.
    Nikitas P; Pappa-Louisi A
    J Chromatogr A; 2009 Mar; 1216(10):1737-55. PubMed ID: 18838140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography.
    Nischang I; Teasdale I; Brüggemann O
    J Chromatogr A; 2010 Nov; 1217(48):7514-22. PubMed ID: 20980011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic degradation of poly (styrene-co-alkyl methacrylate) copolymers.
    Pasupuleti S; Madras G
    Ultrason Sonochem; 2010 Jun; 17(5):819-26. PubMed ID: 20215041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.