BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22227715)

  • 1. Second generation specific-enzyme-activated rotaxane propeptides.
    Fernandes A; Viterisi A; Aucagne V; Leigh DA; Papot S
    Chem Commun (Camb); 2012 Feb; 48(15):2083-5. PubMed ID: 22227715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+ ion templated threading of oligo(ethylene glycol) chains through BPX26C6 allows synthesis of [2]rotaxanes under solvent-free conditions.
    Wu KD; Lin YH; Lai CC; Chiu SH
    Org Lett; 2014 Feb; 16(4):1068-71. PubMed ID: 24499390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligo(ethylene glycol)-modified β-cyclodextrin-based polyrotaxanes for simultaneously modulating solubility and cellular internalization efficiency.
    Tamura A; Ohashi M; Yui N
    J Biomater Sci Polym Ed; 2017; 28(10-12):1124-1139. PubMed ID: 28299982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rigid helical peptide axle for a [2]rotaxane molecular machine.
    Moretto A; Menegazzo I; Crisma M; Shotton EJ; Nowell H; Mammi S; Toniolo C
    Angew Chem Int Ed Engl; 2009; 48(47):8986-9. PubMed ID: 19852012
    [No Abstract]   [Full Text] [Related]  

  • 5. A rotaxane turing machine for peptides.
    Wilson CM; Gualandi A; Cozzi PG
    Chembiochem; 2013 Jul; 14(10):1185-7. PubMed ID: 23733510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the intracellular transport mechanism of a cleft-[2]rotaxane.
    Bao X; Isaacsohn I; Drew AF; Smithrud DB
    J Am Chem Soc; 2006 Sep; 128(37):12229-38. PubMed ID: 16967974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesizing [2]Rotaxanes and [2]Catenanes through Na(+)-Templated Clipping of Macrocycles around Oligo(ethylene glycol) Units.
    Wu YW; Chen PN; Chang CF; Lai CC; Chiu SH
    Org Lett; 2015 May; 17(9):2158-61. PubMed ID: 25905465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotaxane-based propeptides: protection and enzymatic release of a bioactive pentapeptide.
    Fernandes A; Viterisi A; Coutrot F; Potok S; Leigh DA; Aucagne V; Papot S
    Angew Chem Int Ed Engl; 2009; 48(35):6443-7. PubMed ID: 19637268
    [No Abstract]   [Full Text] [Related]  

  • 9. A 1,2,3,4,5-pentaphenylferrocene-stoppered rotaxane capable of electrochemical anion recognition.
    Evans NH; Serpell CJ; White NG; Beer PD
    Chemistry; 2011 Oct; 17(44):12347-54. PubMed ID: 21953676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle.
    Řezanka M; Langton MJ; Beer PD
    Chem Commun (Camb); 2015 Mar; 51(21):4499-502. PubMed ID: 25682747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the intracellular delivery of fluoresceinated peptides by a host-[2]rotaxane.
    Wang X; Bao X; McFarland-Mancini M; Isaacsohn I; Drew AF; Smithrud DB
    J Am Chem Soc; 2007 Jun; 129(23):7284-93. PubMed ID: 17516642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular cage-based [2]rotaxane that behaves as a molecular muscle.
    Chuang CJ; Li WS; Lai CC; Liu YH; Peng SM; Chao I; Chiu SH
    Org Lett; 2009 Jan; 11(2):385-8. PubMed ID: 19099497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-switchable Janus [2]rotaxanes based on α-cyclodextrin derivatives bearing two recognition sites linked with oligo(ethylene glycol).
    Li S; Taura D; Hashidzume A; Harada A
    Chem Asian J; 2010 Oct; 5(10):2281-9. PubMed ID: 20669215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host-rotaxanes with oligomeric axles are intracellular transport agents.
    Zhu J; McFarland-Mancini M; Drew AF; Smithrud DB
    Bioorg Med Chem Lett; 2009 Jan; 19(2):520-3. PubMed ID: 19081721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organometallic rotaxanes with a triazole group in the axle component and their behavior as ligands of PtII complexes.
    Yu G; Suzaki Y; Abe T; Osakada K
    Chem Asian J; 2012 Jan; 7(1):207-13. PubMed ID: 22034229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Protein Rotaxane Controls the Translocation of Proteins Across a ClyA Nanopore.
    Biesemans A; Soskine M; Maglia G
    Nano Lett; 2015 Sep; 15(9):6076-6081. PubMed ID: 26243210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes.
    Tachibana Y; Kawasaki H; Kihara N; Takata T
    J Org Chem; 2006 Jul; 71(14):5093-104. PubMed ID: 16808495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and biological evaluation of multivalent carbohydrate ligands obtained by click assembly of pseudo-rotaxanes.
    Chwalek M; Auzély R; Fort S
    Org Biomol Chem; 2009 Apr; 7(8):1680-8. PubMed ID: 19343257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A host-rotaxane derivatized with carboxylic acids efficiently delivers a highly cationic fluoresceinated peptide.
    Zhu J; House BE; Fleck E; Isaacsohn I; Drew AF; Smithrud DB
    Bioorg Med Chem Lett; 2007 Sep; 17(18):5058-62. PubMed ID: 17656089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-level luminescent response in a pyrene/ferrocene rotaxane.
    Mateo-Alonso A; Ehli C; Guldi DM; Prato M
    Org Lett; 2013 Jan; 15(1):84-7. PubMed ID: 23256512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.