These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22227804)

  • 1. Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction.
    Yan XY; Tong XL; Zhang YF; Han XD; Wang YY; Jin GQ; Qin Y; Guo XY
    Chem Commun (Camb); 2012 Feb; 48(13):1892-4. PubMed ID: 22227804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O.
    Tran PD; Batabyal SK; Pramana SS; Barber J; Wong LH; Loo SC
    Nanoscale; 2012 Jul; 4(13):3875-8. PubMed ID: 22653156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction.
    Ning R; Tian J; Asiri AM; Qusti AH; Al-Youbi AO; Sun X
    Langmuir; 2013 Oct; 29(43):13146-51. PubMed ID: 24117208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions.
    Liu Q; Jin J; Zhang J
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5002-8. PubMed ID: 23662625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aniline as a dispersing and stabilizing agent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection.
    Liu S; Wang L; Tian J; Luo Y; Zhang X; Sun X
    J Colloid Interface Sci; 2011 Nov; 363(2):615-9. PubMed ID: 21855890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible-light-induced dye degradation over copper-modified reduced graphene oxide.
    Xiong Z; Zhang LL; Zhao XS
    Chemistry; 2011 Feb; 17(8):2428-34. PubMed ID: 21319236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite.
    Li Y; Li Y; Zhu E; McLouth T; Chiu CY; Huang X; Huang Y
    J Am Chem Soc; 2012 Aug; 134(30):12326-9. PubMed ID: 22783832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-processed PEDOT:PSS/graphene composites as the electrocatalyst for oxygen reduction reaction.
    Zhang M; Yuan W; Yao B; Li C; Shi G
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3587-93. PubMed ID: 24456474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts.
    Liang Y; Wang H; Zhou J; Li Y; Wang J; Regier T; Dai H
    J Am Chem Soc; 2012 Feb; 134(7):3517-23. PubMed ID: 22280461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification.
    Sreeprasad TS; Maliyekkal SM; Lisha KP; Pradeep T
    J Hazard Mater; 2011 Feb; 186(1):921-31. PubMed ID: 21168962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
    Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q
    Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries.
    Rui X; Zhu J; Sim D; Xu C; Zeng Y; Hng HH; Lim TM; Yan Q
    Nanoscale; 2011 Nov; 3(11):4752-8. PubMed ID: 21989744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deposition of Au-Pt core-shell nanoparticles on reduced graphene oxide and their catalytic activity.
    Cui X; Wu S; Jungwirth S; Chen Z; Wang Z; Wang L; Li Y
    Nanotechnology; 2013 Jul; 24(29):295402. PubMed ID: 23807086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications.
    Xue Y; Chen H; Yu D; Wang S; Yardeni M; Dai Q; Guo M; Liu Y; Lu F; Qu J; Dai L
    Chem Commun (Camb); 2011 Nov; 47(42):11689-91. PubMed ID: 21952144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.
    Liu S; Zeng TH; Hofmann M; Burcombe E; Wei J; Jiang R; Kong J; Chen Y
    ACS Nano; 2011 Sep; 5(9):6971-80. PubMed ID: 21851105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction.
    Sasaki K; Zhang L; Adzic RR
    Phys Chem Chem Phys; 2008 Jan; 10(1):159-67. PubMed ID: 18075695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncovalently functionalized multiwalled carbon nanotubes by chitosan-grafted reduced graphene oxide and their synergistic reinforcing effects in chitosan films.
    Pan Y; Bao H; Li L
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4819-30. PubMed ID: 22091530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of titania structure on the properties of its supported copper oxide catalysts.
    Zhu H; Dong L; Chen Y
    J Colloid Interface Sci; 2011 May; 357(2):497-503. PubMed ID: 21392779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis.
    Huang J; Zhang L; Chen B; Ji N; Chen F; Zhang Y; Zhang Z
    Nanoscale; 2010 Dec; 2(12):2733-8. PubMed ID: 20936236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.