These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 22227809)
41. Variation of the Bacterial Community in the Rhizoplane Iron Plaque of the Wetland Plant Chi H; Yang L; Yang W; Li Y; Chen Z; Huang L; Chao Y; Qiu R; Wang S Int J Environ Res Public Health; 2018 Nov; 15(12):. PubMed ID: 30469475 [TBL] [Abstract][Full Text] [Related]
42. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Margesin R; Hämmerle M; Tscherko D Microb Ecol; 2007 Feb; 53(2):259-69. PubMed ID: 17265002 [TBL] [Abstract][Full Text] [Related]
43. Heavy metal (Pb, Zn) uptake and chemical changes in rhizosphere soils of four wetland plants with different radial oxygen loss. Yang J; Ma Z; Ye Z; Guo X; Qiu R J Environ Sci (China); 2010; 22(5):696-702. PubMed ID: 20608505 [TBL] [Abstract][Full Text] [Related]
44. Growth, nutrient status, and photosynthetic response to diesel-contaminated soil of a cordgrass, Spartina argentinensis. Redondo-Gómez S; Petenello MC; Feldman SR Mar Pollut Bull; 2014 Feb; 79(1-2):34-8. PubMed ID: 24462235 [TBL] [Abstract][Full Text] [Related]
45. Phragmites australis in combination with hydrocarbons degrading bacteria is a suitable option for remediation of diesel-contaminated water in floating wetlands. Fahid M; Arslan M; Shabir G; Younus S; Yasmeen T; Rizwan M; Siddique K; Ahmad SR; Tahseen R; Iqbal S; Ali S; Afzal M Chemosphere; 2020 Feb; 240():124890. PubMed ID: 31726588 [TBL] [Abstract][Full Text] [Related]
46. Characterization of the microbial community in the rhizosphere of Phragmites australis (cav.) trin ex. steudel growing in the Sun Island Wetland. Ma F; Wu J; Wang L; Yang J; Li S; Li Z; Zhag X Water Environ Res; 2014 Mar; 86(3):258-68. PubMed ID: 24734473 [TBL] [Abstract][Full Text] [Related]
47. The effect of diesel fuel on common vetch (Vicia sativa L.) plants. Adam G; Duncan H Environ Geochem Health; 2003 Mar; 25(1):123-30. PubMed ID: 12901087 [TBL] [Abstract][Full Text] [Related]
48. Petroleum-degrading microbial numbers in rhizosphere and non-rhizosphere crude oil-contaminated soil. Kirkpatrick WD; White PM; Wolf DC; Thoma GJ; Reynolds CM Int J Phytoremediation; 2008; 10(3):208-19. PubMed ID: 18710096 [TBL] [Abstract][Full Text] [Related]
49. Combined application of biochar and nitrogen fertilizer benefits nitrogen retention in the rhizosphere of soybean by increasing microbial biomass but not altering microbial community structure. Yu L; Yu M; Lu X; Tang C; Liu X; Brookes PC; Xu J Sci Total Environ; 2018 Nov; 640-641():1221-1230. PubMed ID: 30021287 [TBL] [Abstract][Full Text] [Related]
50. [Effects of biochar and sheep manure on rhizospheric soil microbial community in continuous ratooning tea orchards]. Li YC; Li ZW; Lin WW; Jiang YH; Weng BQ; Lin WX Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1273-1282. PubMed ID: 29726238 [TBL] [Abstract][Full Text] [Related]
51. Structure and function of rhizosphere and non-rhizosphere soil microbial community respond differently to elevated ozone in field-planted wheat. Chen Z; Wang X; Shang H J Environ Sci (China); 2015 Jun; 32():126-34. PubMed ID: 26040739 [TBL] [Abstract][Full Text] [Related]
52. [Efficiency of alfalfa and reed in the phytoremediation of hydrocarbon polluted soil]. Muratova AIu; Turkovskaia OV; Hubner T; Kuschk P Prikl Biokhim Mikrobiol; 2003; 39(6):681-8. PubMed ID: 14714484 [TBL] [Abstract][Full Text] [Related]
53. [Microbial Community Structure of Soil Methanogens and Methanotrophs During Degradation and Restoration of Reed Wetlands in the Songnen Plain]. Wang QY; Wang N; Liu Y; Chen G; He H; Gao J; Zhuang XL; Zhuang GQ Huan Jing Ke Xue; 2021 Oct; 42(10):4968-4976. PubMed ID: 34581141 [TBL] [Abstract][Full Text] [Related]
54. Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland. Wu H; Wang X; He X; Zhang S; Liang R; Shen J Sci Total Environ; 2017 Nov; 598():697-703. PubMed ID: 28456121 [TBL] [Abstract][Full Text] [Related]
55. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh. Chaudhary DR; Kim J; Kang H Microb Ecol; 2018 Apr; 75(3):729-738. PubMed ID: 28986657 [TBL] [Abstract][Full Text] [Related]
56. Influence of plants and environmental variables on the diversity of soil microbial communities in the Yellow River Delta Wetland, China. Li J; Chen Q; Li Q; Zhao C; Feng Y Chemosphere; 2021 Jul; 274():129967. PubMed ID: 33979943 [TBL] [Abstract][Full Text] [Related]
57. Effect of rhizodeposition on pyrene bioaccessibility and microbial structure in pyrene and pyrene-lead polluted soil. Wei J; Liu X; Wang Q; Wang C; Chen X; Li H Chemosphere; 2014 Feb; 97():92-7. PubMed ID: 24188625 [TBL] [Abstract][Full Text] [Related]
58. Interactions between selected PAHs and the microbial community in rhizosphere of a paddy soil. Su YH; Yang XY Sci Total Environ; 2009 Jan; 407(3):1027-34. PubMed ID: 19000632 [TBL] [Abstract][Full Text] [Related]
59. Responses of butachlor degradation and microbial properties in a riparian soil to the cultivation of three different plants. Yang C; Wang M; Chen H; Li J J Environ Sci (China); 2011; 23(9):1437-44. PubMed ID: 22432278 [TBL] [Abstract][Full Text] [Related]
60. Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. Fernandes JP; Almeida CMR; Andreotti F; Barros L; Almeida T; Mucha AP Sci Total Environ; 2017 Mar; 581-582():801-810. PubMed ID: 28069300 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]