These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22227884)

  • 1. Optimizing the order of operations for movement scrubbing: Comment on Power et al.
    Carp J
    Neuroimage; 2013 Aug; 76():436-8. PubMed ID: 22227884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI.
    Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Less is more: balancing noise reduction and data retention in fMRI with data-driven scrubbing.
    Phạm DĐ; McDonald DJ; Ding L; Nebel MB; Mejia AF
    Neuroimage; 2023 Apr; 270():119972. PubMed ID: 36842522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data.
    Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular preprocessing pipelines can reintroduce artifacts into fMRI data.
    Lindquist MA; Geuter S; Wager TD; Caffo BS
    Hum Brain Mapp; 2019 Jun; 40(8):2358-2376. PubMed ID: 30666750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
    Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J
    Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and minimization of head motion-induced signal variations in fMRI data using independent component analysis.
    Liao R; McKeown MJ; Krolik JL
    Magn Reson Med; 2006 Jun; 55(6):1396-413. PubMed ID: 16676336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based attenuation of movement artifacts in fMRI.
    Lemmin T; Ganesh G; Gassert R; Burdet E; Kawato M; Haruno M
    J Neurosci Methods; 2010 Sep; 192(1):58-69. PubMed ID: 20654648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal filtering effects in dynamic parallel MRI.
    Blaimer M; Ponce IP; Breuer FA; Jakob PM; Griswold MA; Kellman P
    Magn Reson Med; 2011 Jul; 66(1):192-8. PubMed ID: 21695723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Less head motion during MRI under task than resting-state conditions.
    Huijbers W; Van Dijk KRA; Boenniger MM; Stirnberg R; Breteler MMB
    Neuroimage; 2017 Feb; 147():111-120. PubMed ID: 27919751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time motion analytics during brain MRI improve data quality and reduce costs.
    Dosenbach NUF; Koller JM; Earl EA; Miranda-Dominguez O; Klein RL; Van AN; Snyder AZ; Nagel BJ; Nigg JT; Nguyen AL; Wesevich V; Greene DJ; Fair DA
    Neuroimage; 2017 Nov; 161():80-93. PubMed ID: 28803940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG-assisted retrospective motion correction for fMRI: E-REMCOR.
    Zotev V; Yuan H; Phillips R; Bodurka J
    Neuroimage; 2012 Nov; 63(2):698-712. PubMed ID: 22836172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A four-dimensional registration algorithm with application to joint correction of motion and slice timing in fMRI.
    Roche A
    IEEE Trans Med Imaging; 2011 Aug; 30(8):1546-54. PubMed ID: 21427017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp.
    Power JD; Barnes KA; Snyder AZ; Schlaggar BL; Petersen SE
    Neuroimage; 2013 Aug; 76():439-41. PubMed ID: 22440651
    [No Abstract]   [Full Text] [Related]  

  • 15. Lattice permutation for reducing motion artifacts in radial and spiral dynamic imaging.
    Tsao J; Boesiger P; Pruessmann KP
    Magn Reson Med; 2006 Jan; 55(1):116-25. PubMed ID: 16323156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A higher dimensional homodyne filter for phase sensitive partial Fourier reconstruction of magnetic resonance imaging.
    Paul JS; Krishna Swamy Pillai U
    Magn Reson Imaging; 2015 Nov; 33(9):1114-1125. PubMed ID: 26117692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data.
    Kim HC; Yoo SS; Lee JH
    Neuroimage; 2015 Jan; 104():437-51. PubMed ID: 25284302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion compensation in the region of the coronary arteries based on partial angle reconstructions from short-scan CT data.
    Hahn J; Bruder H; Rohkohl C; Allmendinger T; Stierstorfer K; Flohr T; Kachelrieß M
    Med Phys; 2017 Nov; 44(11):5795-5813. PubMed ID: 28801918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing T2-weighted magnetic resonance sequences for surface coil microimaging of the eye with regard to lid, eyeball and head moving artifacts.
    Obata T; Uemura K; Nonaka H; Tamura M; Tanada S; Ikehira H
    Magn Reson Imaging; 2006 Jan; 24(1):97-101. PubMed ID: 16410184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Head Motion and Correction Methods in Resting-state Functional MRI.
    Goto M; Abe O; Miyati T; Yamasue H; Gomi T; Takeda T
    Magn Reson Med Sci; 2016; 15(2):178-86. PubMed ID: 26701695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.