These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22227905)

  • 1. De novo transcriptome assembly of RNA-Seq reads with different strategies.
    Chen G; Yin K; Wang C; Shi T
    Sci China Life Sci; 2011 Dec; 54(12):1129-33. PubMed ID: 22227905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq.
    Lu B; Zeng Z; Shi T
    Sci China Life Sci; 2013 Feb; 56(2):143-55. PubMed ID: 23393030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A differential k-mer analysis pipeline for comparing RNA-Seq transcriptome and meta-transcriptome datasets without a reference.
    Chan CK; Rosic N; Lorenc MT; Visendi P; Lin M; Kaniewska P; Ferguson BJ; Gresshoff PM; Batley J; Edwards D
    Funct Integr Genomics; 2019 Mar; 19(2):363-371. PubMed ID: 30483906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical assessment of assembly strategies for non-model species mRNA-Seq data and application of next-generation sequencing to the comparison of C(3) and C(4) species.
    Bräutigam A; Mullick T; Schliesky S; Weber AP
    J Exp Bot; 2011 May; 62(9):3093-102. PubMed ID: 21398430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus.
    Rana SB; Zadlock FJ; Zhang Z; Murphy WR; Bentivegna CS
    PLoS One; 2016; 11(4):e0153104. PubMed ID: 27054874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments.
    Vijay N; Poelstra JW; Künstner A; Wolf JB
    Mol Ecol; 2013 Feb; 22(3):620-34. PubMed ID: 22998089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study.
    Zhao QY; Wang Y; Kong YM; Luo D; Li X; Hao P
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S2. PubMed ID: 22373417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative performance of transcriptome assembly methods for non-model organisms.
    Huang X; Chen XG; Armbruster PA
    BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of de novo transcriptome assemblers in diploid and polyploid species using peanut (Arachis spp.) RNA-Seq data.
    Chopra R; Burow G; Farmer A; Mudge J; Simpson CE; Burow MD
    PLoS One; 2014; 9(12):e115055. PubMed ID: 25551607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reference-free transcriptome assembly in non-model animals from next-generation sequencing data.
    Cahais V; Gayral P; Tsagkogeorga G; Melo-Ferreira J; Ballenghien M; Weinert L; Chiari Y; Belkhir K; Ranwez V; Galtier N
    Mol Ecol Resour; 2012 Sep; 12(5):834-45. PubMed ID: 22540679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short reads and nonmodel species: exploring the complexities of next-generation sequence assembly and SNP discovery in the absence of a reference genome.
    Everett MV; Grau ED; Seeb JE
    Mol Ecol Resour; 2011 Mar; 11 Suppl 1():93-108. PubMed ID: 21429166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo assembly of the Pseudomonas syringae pv. syringae B728a genome using Illumina/Solexa short sequence reads.
    Farrer RA; Kemen E; Jones JD; Studholme DJ
    FEMS Microbiol Lett; 2009 Feb; 291(1):103-11. PubMed ID: 19077061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ClusTrast: a short read de novo transcript isoform assembler guided by clustered contigs.
    Westrin KJ; Kretzschmar WW; Emanuelsson O
    BMC Bioinformatics; 2024 Feb; 25(1):54. PubMed ID: 38302873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis.
    Wang S; Gribskov M
    Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome.
    Su CL; Chao YT; Alex Chang YC; Chen WC; Chen CY; Lee AY; Hwa KT; Shih MC
    Plant Cell Physiol; 2011 Sep; 52(9):1501-14. PubMed ID: 21771864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SSP: an interval integer linear programming for de novo transcriptome assembly and isoform discovery of RNA-seq reads.
    Safikhani Z; Sadeghi M; Pezeshk H; Eslahchi C
    Genomics; 2013; 102(5-6):507-14. PubMed ID: 24161398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of next generation sequencing technologies for transcriptome assembly and utility for RNA-Seq in a non-model bird.
    Finseth FR; Harrison RG
    PLoS One; 2014; 9(10):e108550. PubMed ID: 25279728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics challenges in de novo transcriptome assembly using short read sequences in the absence of a reference genome sequence.
    Góngora-Castillo E; Buell CR
    Nat Prod Rep; 2013 Apr; 30(4):490-500. PubMed ID: 23377493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data.
    Duan J; Xia C; Zhao G; Jia J; Kong X
    BMC Genomics; 2012 Aug; 13():392. PubMed ID: 22891638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.