BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

694 related articles for article (PubMed ID: 22228021)

  • 21. Deep sequencing in cancer research.
    Yoshida K; Sanada M; Ogawa S
    Jpn J Clin Oncol; 2013 Feb; 43(2):110-5. PubMed ID: 23225907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Representing genetic variation with synthetic DNA standards.
    Deveson IW; Chen WY; Wong T; Hardwick SA; Andersen SB; Nielsen LK; Mattick JS; Mercer TR
    Nat Methods; 2016 Sep; 13(9):784-91. PubMed ID: 27502217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The complete genome of an individual by massively parallel DNA sequencing.
    Wheeler DA; Srinivasan M; Egholm M; Shen Y; Chen L; McGuire A; He W; Chen YJ; Makhijani V; Roth GT; Gomes X; Tartaro K; Niazi F; Turcotte CL; Irzyk GP; Lupski JR; Chinault C; Song XZ; Liu Y; Yuan Y; Nazareth L; Qin X; Muzny DM; Margulies M; Weinstock GM; Gibbs RA; Rothberg JM
    Nature; 2008 Apr; 452(7189):872-6. PubMed ID: 18421352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Building a genome analysis pipeline to predict disease risk and prevent disease.
    Bromberg Y
    J Mol Biol; 2013 Nov; 425(21):3993-4005. PubMed ID: 23928561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The challenges of studying complex and dynamic regions of the human genome.
    Hollox EJ
    Methods Mol Biol; 2012; 838():187-207. PubMed ID: 22228013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of Next Generation Sequencing (NGS) technologies for the genome-wide detection of transposition.
    Elbaidouri M; Chaparro C; Panaud O
    Methods Mol Biol; 2013; 1057():265-74. PubMed ID: 23918435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Key principles and clinical applications of "next-generation" DNA sequencing.
    Rizzo JM; Buck MJ
    Cancer Prev Res (Phila); 2012 Jul; 5(7):887-900. PubMed ID: 22617168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A remark on copy number variation detection methods.
    Li S; Dou X; Gao R; Ge X; Qian M; Wan L
    PLoS One; 2018; 13(4):e0196226. PubMed ID: 29702671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copy Number Variations Detection: Unravelling the Problem in Tangible Aspects.
    do Nascimento F; Guimaraes KS
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1237-1250. PubMed ID: 27295681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. OncoSNP-SEQ: a statistical approach for the identification of somatic copy number alterations from next-generation sequencing of cancer genomes.
    Yau C
    Bioinformatics; 2013 Oct; 29(19):2482-4. PubMed ID: 23926227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathogen comparative genomics in the next-generation sequencing era: genome alignments, pangenomics and metagenomics.
    Hu B; Xie G; Lo CC; Starkenburg SR; Chain PS
    Brief Funct Genomics; 2011 Nov; 10(6):322-33. PubMed ID: 22199376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic tools for characterizing monogenic and polygenic traits in ruminants--using the bovine as an example.
    Taylor JF; Chapple RH; Decker JE; Gregg SJ; Kim JW; McKay SD; Ramey HR; Rolf MM; Taxis TM; Schnabel RD
    Soc Reprod Fertil Suppl; 2010; 67():13-28. PubMed ID: 21755660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A glimpse into past, present, and future DNA sequencing.
    Morey M; Fernández-Marmiesse A; Castiñeiras D; Fraga JM; Couce ML; Cocho JA
    Mol Genet Metab; 2013; 110(1-2):3-24. PubMed ID: 23742747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-exome/genome sequencing and genomics.
    Grody WW; Thompson BH; Hudgins L
    Pediatrics; 2013 Dec; 132(Suppl 3):S211-5. PubMed ID: 24298129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impacts of variation in the human genome on gene regulation.
    Haraksingh RR; Snyder MP
    J Mol Biol; 2013 Nov; 425(21):3970-7. PubMed ID: 23871684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational methods for discovering structural variation with next-generation sequencing.
    Medvedev P; Stanciu M; Brudno M
    Nat Methods; 2009 Nov; 6(11 Suppl):S13-20. PubMed ID: 19844226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Massively parallel sequencing approaches for characterization of structural variation.
    Koboldt DC; Larson DE; Chen K; Ding L; Wilson RK
    Methods Mol Biol; 2012; 838():369-84. PubMed ID: 22228022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural variation discovery in the cancer genome using next generation sequencing: computational solutions and perspectives.
    Liu B; Conroy JM; Morrison CD; Odunsi AO; Qin M; Wei L; Trump DL; Johnson CS; Liu S; Wang J
    Oncotarget; 2015 Mar; 6(8):5477-89. PubMed ID: 25849937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How to infer reliable diploid genotypes from NGS or traditional sequence data: from basic probability to experimental optimization.
    Chenuil A
    J Evol Biol; 2012 May; 25(5):949-60. PubMed ID: 22420488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perspectives for identification of mutations in the zebrafish: making use of next-generation sequencing technologies for forward genetic approaches.
    Henke K; Bowen ME; Harris MP
    Methods; 2013 Aug; 62(3):185-96. PubMed ID: 23748111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.