These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Insight into substrate recognition and catalysis by the human neuraminidase 3 (NEU3) through molecular modeling and site-directed mutagenesis. Albohy A; Li MD; Zheng RB; Zou C; Cairo CW Glycobiology; 2010 Sep; 20(9):1127-38. PubMed ID: 20511247 [TBL] [Abstract][Full Text] [Related]
4. Homology modeling of human sialidase enzymes NEU1, NEU3 and NEU4 based on the crystal structure of NEU2: hints for the design of selective NEU3 inhibitors. Magesh S; Suzuki T; Miyagi T; Ishida H; Kiso M J Mol Graph Model; 2006 Oct; 25(2):196-207. PubMed ID: 16427342 [TBL] [Abstract][Full Text] [Related]
5. Galactose recognition by the carbohydrate-binding module of a bacterial sialidase. Newstead SL; Watson JN; Bennet AJ; Taylor G Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1483-91. PubMed ID: 16239725 [TBL] [Abstract][Full Text] [Related]
6. Structural studies on the Pseudomonas aeruginosa sialidase-like enzyme PA2794 suggest substrate and mechanistic variations. Xu G; Ryan C; Kiefel MJ; Wilson JC; Taylor GL J Mol Biol; 2009 Feb; 386(3):828-40. PubMed ID: 19166860 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of the human cytosolic sialidase Neu2. Evidence for the dynamic nature of substrate recognition. Chavas LM; Tringali C; Fusi P; Venerando B; Tettamanti G; Kato R; Monti E; Wakatsuki S J Biol Chem; 2005 Jan; 280(1):469-75. PubMed ID: 15501818 [TBL] [Abstract][Full Text] [Related]
8. Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies. Li Y; Cao H; Yu H; Chen Y; Lau K; Qu J; Thon V; Sugiarto G; Chen X Mol Biosyst; 2011 Apr; 7(4):1060-72. PubMed ID: 21206954 [TBL] [Abstract][Full Text] [Related]
9. Complexity in influenza virus targeted drug design: interaction with human sialidases. Chavas LM; Kato R; Suzuki N; von Itzstein M; Mann MC; Thomson RJ; Dyason JC; McKimm-Breschkin J; Fusi P; Tringali C; Venerando B; Tettamanti G; Monti E; Wakatsuki S J Med Chem; 2010 Apr; 53(7):2998-3002. PubMed ID: 20222714 [TBL] [Abstract][Full Text] [Related]
10. Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity. Zhang Y; Swaminathan GJ; Deshpande A; Boix E; Natesh R; Xie Z; Acharya KR; Brew K Biochemistry; 2003 Nov; 42(46):13512-21. PubMed ID: 14621997 [TBL] [Abstract][Full Text] [Related]
11. Expression of a novel human sialidase encoded by the NEU2 gene. Monti E; Preti A; Nesti C; Ballabio A; Borsani G Glycobiology; 1999 Dec; 9(12):1313-21. PubMed ID: 10561456 [TBL] [Abstract][Full Text] [Related]
12. Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 2. Crystallographic and molecular modeling study of complexes of 4-amino-4H-pyran-6-carboxamides and sialidase from influenza virus types A and B. Taylor NR; Cleasby A; Singh O; Skarzynski T; Wonacott AJ; Smith PW; Sollis SL; Howes PD; Cherry PC; Bethell R; Colman P; Varghese J J Med Chem; 1998 Mar; 41(6):798-807. PubMed ID: 9526556 [TBL] [Abstract][Full Text] [Related]
13. Neuraminidase of 2007-2008 influenza A(H1N1) viruses shows increased affinity for sialic acids due to the D344N substitution. Rameix-Welti MA; Munier S; Le Gal S; Cuvelier F; Agou F; Enouf V; Naffakh N; van der Werf S Antivir Ther; 2011; 16(4):597-603. PubMed ID: 21685548 [TBL] [Abstract][Full Text] [Related]
14. Lactose derivatives are inhibitors of Trypanosoma cruzi trans-sialidase activity toward conventional substrates in vitro and in vivo. Agustí R; París G; Ratier L; Frasch AC; de Lederkremer RM Glycobiology; 2004 Jul; 14(7):659-70. PubMed ID: 15070857 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2. Khedri Z; Li Y; Cao H; Qu J; Yu H; Muthana MM; Chen X Org Biomol Chem; 2012 Aug; 10(30):6112-20. PubMed ID: 22641268 [TBL] [Abstract][Full Text] [Related]
16. Bacterial and viral sialidases: contribution of the conserved active site glutamate to catalysis. Chan J; Watson JN; Lu A; Cerda VC; Borgford TJ; Bennet AJ Biochemistry; 2012 Jan; 51(1):433-41. PubMed ID: 22133027 [TBL] [Abstract][Full Text] [Related]
17. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling. Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of the NanB sialidase from Streptococcus pneumoniae. Xu G; Potter JA; Russell RJ; Oggioni MR; Andrew PW; Taylor GL J Mol Biol; 2008 Dec; 384(2):436-49. PubMed ID: 18835278 [TBL] [Abstract][Full Text] [Related]
19. Differential expression of endogenous sialidases of human monocytes during cellular differentiation into macrophages. Stamatos NM; Liang F; Nan X; Landry K; Cross AS; Wang LX; Pshezhetsky AV FEBS J; 2005 May; 272(10):2545-56. PubMed ID: 15885103 [TBL] [Abstract][Full Text] [Related]
20. Roles of active site tryptophans in substrate binding and catalysis by alpha-1,3 galactosyltransferase. Zhang Y; Deshpande A; Xie Z; Natesh R; Acharya KR; Brew K Glycobiology; 2004 Dec; 14(12):1295-302. PubMed ID: 15229192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]