These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22229653)

  • 1. Fully enclosed microfluidic paper-based analytical devices.
    Schilling KM; Lepore AL; Kurian JA; Martinez AW
    Anal Chem; 2012 Feb; 84(3):1579-85. PubMed ID: 22229653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of laser printed microfluidic paper-based analytical devices (LP-µPADs) for point-of-care applications.
    Ghosh R; Gopalakrishnan S; Savitha R; Renganathan T; Pushpavanam S
    Sci Rep; 2019 May; 9(1):7896. PubMed ID: 31133720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer.
    Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW
    Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toner and paper-based fabrication techniques for microfluidic applications.
    Coltro WK; de Jesus DP; da Silva JA; do Lago CL; Carrilho E
    Electrophoresis; 2010 Aug; 31(15):2487-98. PubMed ID: 20665911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metering the capillary-driven flow of fluids in paper-based microfluidic devices.
    Noh H; Phillips ST
    Anal Chem; 2010 May; 82(10):4181-7. PubMed ID: 20411969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of paper-based microfluidic sensors by printing.
    Li X; Tian J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable diagnostic devices made from paper and tape.
    Martinez AW; Phillips ST; Nie Z; Cheng CM; Carrilho E; Wiley BJ; Whitesides GM
    Lab Chip; 2010 Oct; 10(19):2499-504. PubMed ID: 20672179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and alternative fabrication method for microfluidic paper based analytical devices.
    Malekghasemi S; Kahveci E; Duman M
    Talanta; 2016 Oct; 159():401-411. PubMed ID: 27474324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of microchip electrophoresis devices fabricated by direct-printing process with colored toner.
    Gabriel EF; do Lago CL; Gobbi ÅL; Carrilho E; Coltro WK
    Electrophoresis; 2013 Aug; 34(15):2169-76. PubMed ID: 23712918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs).
    Strong EB; Schultz SA; Martinez AW; Martinez NW
    Sci Rep; 2019 Jan; 9(1):7. PubMed ID: 30626903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Sensing Behavior of Three-Dimensional Microfluidic Paper-Based Analytical Devices (3D-μPADs) with Evaporation-Free Enclosed Channels for Point-of-Care Testing.
    Jeon J; Park C; Ponnuvelu DV; Park S
    Diagnostics (Basel); 2021 May; 11(6):. PubMed ID: 34071424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostics for the developing world: microfluidic paper-based analytical devices.
    Martinez AW; Phillips ST; Whitesides GM; Carrilho E
    Anal Chem; 2010 Jan; 82(1):3-10. PubMed ID: 20000334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically addressable single-use microfluidic valves by laser printer lithography.
    Garcia-Cordero JL; Kurzbuch D; Benito-Lopez F; Diamond D; Lee LP; Ricco AJ
    Lab Chip; 2010 Oct; 10(20):2680-7. PubMed ID: 20740236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.
    Yang X; Forouzan O; Brown TP; Shevkoplyas SS
    Lab Chip; 2012 Jan; 12(2):274-80. PubMed ID: 22094609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional wax patterning of paper fluidic devices.
    Renault C; Koehne J; Ricco AJ; Crooks RM
    Langmuir; 2014 Jun; 30(23):7030-6. PubMed ID: 24896490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of fully enclosed paper microfluidic devices using plasma deposition and etching.
    Raj N; Breedveld V; Hess DW
    Lab Chip; 2019 Oct; 19(19):3337-3343. PubMed ID: 31501838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-ply channels for faster wicking in paper-based microfluidic devices.
    Camplisson CK; Schilling KM; Pedrotti WL; Stone HA; Martinez AW
    Lab Chip; 2015 Dec; 15(23):4461-6. PubMed ID: 26477676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic devices obtained by thermal toner transferring on glass substrate.
    do Lago CL; Neves CA; Pereira de Jesus D; da Silva HD; Brito-Neto JG; Fracassi da Silva JA
    Electrophoresis; 2004 Nov; 25(21-22):3825-31. PubMed ID: 15565679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Microfluidic Paper-Based Analytical Devices toward High-Throughput Screening.
    Boobphahom S; Ly MN; Soum V; Pyun N; Kwon OS; Rodthongkum N; Shin K
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32605281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.