These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer. Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851 [TBL] [Abstract][Full Text] [Related]
4. Toner and paper-based fabrication techniques for microfluidic applications. Coltro WK; de Jesus DP; da Silva JA; do Lago CL; Carrilho E Electrophoresis; 2010 Aug; 31(15):2487-98. PubMed ID: 20665911 [TBL] [Abstract][Full Text] [Related]
5. Metering the capillary-driven flow of fluids in paper-based microfluidic devices. Noh H; Phillips ST Anal Chem; 2010 May; 82(10):4181-7. PubMed ID: 20411969 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of paper-based microfluidic sensors by printing. Li X; Tian J; Garnier G; Shen W Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546 [TBL] [Abstract][Full Text] [Related]
7. Programmable diagnostic devices made from paper and tape. Martinez AW; Phillips ST; Nie Z; Cheng CM; Carrilho E; Wiley BJ; Whitesides GM Lab Chip; 2010 Oct; 10(19):2499-504. PubMed ID: 20672179 [TBL] [Abstract][Full Text] [Related]
8. Rapid and alternative fabrication method for microfluidic paper based analytical devices. Malekghasemi S; Kahveci E; Duman M Talanta; 2016 Oct; 159():401-411. PubMed ID: 27474324 [TBL] [Abstract][Full Text] [Related]
9. Characterization of microchip electrophoresis devices fabricated by direct-printing process with colored toner. Gabriel EF; do Lago CL; Gobbi ÅL; Carrilho E; Coltro WK Electrophoresis; 2013 Aug; 34(15):2169-76. PubMed ID: 23712918 [TBL] [Abstract][Full Text] [Related]
14. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Yang X; Forouzan O; Brown TP; Shevkoplyas SS Lab Chip; 2012 Jan; 12(2):274-80. PubMed ID: 22094609 [TBL] [Abstract][Full Text] [Related]
15. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional wax patterning of paper fluidic devices. Renault C; Koehne J; Ricco AJ; Crooks RM Langmuir; 2014 Jun; 30(23):7030-6. PubMed ID: 24896490 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of fully enclosed paper microfluidic devices using plasma deposition and etching. Raj N; Breedveld V; Hess DW Lab Chip; 2019 Oct; 19(19):3337-3343. PubMed ID: 31501838 [TBL] [Abstract][Full Text] [Related]
18. Two-ply channels for faster wicking in paper-based microfluidic devices. Camplisson CK; Schilling KM; Pedrotti WL; Stone HA; Martinez AW Lab Chip; 2015 Dec; 15(23):4461-6. PubMed ID: 26477676 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic devices obtained by thermal toner transferring on glass substrate. do Lago CL; Neves CA; Pereira de Jesus D; da Silva HD; Brito-Neto JG; Fracassi da Silva JA Electrophoresis; 2004 Nov; 25(21-22):3825-31. PubMed ID: 15565679 [TBL] [Abstract][Full Text] [Related]