These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22229653)

  • 21. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process.
    Liu AL; He FY; Wang K; Zhou T; Lu Y; Xia XH
    Lab Chip; 2005 Sep; 5(9):974-8. PubMed ID: 16100582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Enclosed Paper Microfluidic Chip as a Sample Preconcentrator Based on Ion Concentration Polarization.
    Liu N; Phan DT; Lew WS
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1392-1399. PubMed ID: 28792905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Paper-based analytical device for quantitative urinalysis.
    Jeong SG; Kim J; Nam JO; Song YS; Lee CS
    Int Neurourol J; 2013 Dec; 17(4):155-61. PubMed ID: 24466461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane).
    Weibel DB; Siegel AC; Lee A; George AH; Whitesides GM
    Lab Chip; 2007 Dec; 7(12):1832-6. PubMed ID: 18030408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrophoresis microchip fabricated by a direct-printing process with end-channel amperometric detection.
    Coltro WK; da Silva JA; da Silva HD; Richter EM; Furlan R; Angnes L; do Lago CL; Mazo LH; Carrilho E
    Electrophoresis; 2004 Nov; 25(21-22):3832-9. PubMed ID: 15565680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional toner for office laser printer and its application for printing of paper-based superwettable patterns and devices.
    Liu Y; Liu X; Chen J; Zhang Z; Feng L
    Sci Rep; 2023 Aug; 13(1):12592. PubMed ID: 37537193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic paper-based analytical devices (µPADs) for fast and ultrasensitive sensing of biomarkers and monitoring of diseases.
    Abdollahi-Aghdam A; Majidi MR; Omidi Y
    Bioimpacts; 2018; 8(4):237-240. PubMed ID: 30397578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Green microfluidic devices made of corn proteins.
    Luecha J; Hsiao A; Brodsky S; Liu GL; Kokini JL
    Lab Chip; 2011 Oct; 11(20):3419-25. PubMed ID: 21918783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing.
    Wang S; Ge L; Song X; Yu J; Ge S; Huang J; Zeng F
    Biosens Bioelectron; 2012 Jan; 31(1):212-8. PubMed ID: 22051546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maximizing flow rate in single paper layer, rapid flow microfluidic paper-based analytical devices.
    Macleod Briongos I; Call ZD; Henry CS; Bark DL
    Microfluid Nanofluidics; 2023; 27(10):70. PubMed ID: 37719231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 1000-fold sample focusing on paper-based microfluidic devices.
    Rosenfeld T; Bercovici M
    Lab Chip; 2014 Dec; 14(23):4465-74. PubMed ID: 25256832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A touch-and-go lipid wrapping technique in microfluidic channels for rapid fabrication of multifunctional envelope-type gene delivery nanodevices.
    Kitazoe K; Wang J; Kaji N; Okamoto Y; Tokeshi M; Kogure K; Harashima H; Baba Y
    Lab Chip; 2011 Oct; 11(19):3256-62. PubMed ID: 21829858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape.
    Cheng CM; Mazzeo AD; Gong J; Martinez AW; Phillips ST; Jain N; Whitesides GM
    Lab Chip; 2010 Dec; 10(23):3201-5. PubMed ID: 20949218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inkjet-printed microfluidic multianalyte chemical sensing paper.
    Abe K; Suzuki K; Citterio D
    Anal Chem; 2008 Sep; 80(18):6928-34. PubMed ID: 18698798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method.
    Thompson BL; Ouyang Y; Duarte GR; Carrilho E; Krauss ST; Landers JP
    Nat Protoc; 2015 Jun; 10(6):875-86. PubMed ID: 25974096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Developments in Microfluidic Paper-based Analytical Devices for Pharmaceutical Analysis.
    Khamcharoen W; Kaewjua K; Yomthiangthae P; Anekrattanasap A; Chailapakul O; Siangproh W
    Curr Top Med Chem; 2022; 22(27):2241-2260. PubMed ID: 36305123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A self-contained fully-enclosed microfluidic cartridge for lab on a chip.
    Yobas L; Cheow LF; Tang KC; Yong SE; Ong EK; Wong L; Teo WC; Ji H; Rafeah S; Yu C
    Biomed Microdevices; 2009 Dec; 11(6):1279-88. PubMed ID: 19757073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Reagent Pencils for Deposition of Reagents onto Paper-Based Microfluidic Devices.
    Liu CH; Noxon IC; Cuellar LE; Thraen AL; Immoos CE; Martinez AW; Costanzo PJ
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enclosed paper-based analytical devices: Concept, variety, and outlook.
    Wang CM; Chen CY; Liao WS
    Anal Chim Acta; 2021 Feb; 1144():158-174. PubMed ID: 33453793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing.
    Lu Y; Shi W; Qin J; Lin B
    Anal Chem; 2010 Jan; 82(1):329-35. PubMed ID: 20000582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.